Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,30 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
from datasets import Dataset,DatasetDict
|
8 |
|
|
|
|
|
9 |
classifier = pipeline("text-classification", model=model_nm)
|
10 |
|
11 |
-
|
12 |
-
df = pd.read_csv(path/
|
13 |
-
|
14 |
df.describe(include='object')
|
15 |
-
|
16 |
df['input'] = 'TEXT1: ' + df.context + '; TEXT2: ' + df.target + '; ANC1: ' + df.anchor
|
17 |
-
|
18 |
-
df.input.head()
|
19 |
-
|
20 |
-
|
21 |
ds = Dataset.from_pandas(df)
|
22 |
|
|
|
23 |
def predict_text(input_text):
|
24 |
prediction = classifier(input_text)
|
25 |
return prediction
|
26 |
|
27 |
-
|
28 |
-
|
29 |
text_input = gr.inputs.Textbox(lines=7, label="Unesite tekst")
|
30 |
output_text = gr.outputs.Textbox(label="Predikcija")
|
31 |
-
|
32 |
gr.Interface(predict_text, inputs=text_input, outputs=output_text).launch()
|
33 |
|
34 |
-
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
+
from datasets import Dataset
|
6 |
|
7 |
+
# Enable SafeTensors if available
|
8 |
+
if torch.__version__ >= "1.10":
|
9 |
+
torch.set_safety_enabled(True)
|
|
|
10 |
|
11 |
+
# Load the model
|
12 |
+
model_nm = 'microsoft/deberta-v3-small'
|
13 |
classifier = pipeline("text-classification", model=model_nm)
|
14 |
|
15 |
+
# Read and preprocess data
|
16 |
+
df = pd.read_csv("path/to/train.csv") # Replace "path/to/train.csv" with the actual path
|
|
|
17 |
df.describe(include='object')
|
|
|
18 |
df['input'] = 'TEXT1: ' + df.context + '; TEXT2: ' + df.target + '; ANC1: ' + df.anchor
|
|
|
|
|
|
|
|
|
19 |
ds = Dataset.from_pandas(df)
|
20 |
|
21 |
+
# Define prediction function
|
22 |
def predict_text(input_text):
|
23 |
prediction = classifier(input_text)
|
24 |
return prediction
|
25 |
|
26 |
+
# Define Gradio interface
|
|
|
27 |
text_input = gr.inputs.Textbox(lines=7, label="Unesite tekst")
|
28 |
output_text = gr.outputs.Textbox(label="Predikcija")
|
|
|
29 |
gr.Interface(predict_text, inputs=text_input, outputs=output_text).launch()
|
30 |
|
|