katielink commited on
Commit
ae1dc47
·
1 Parent(s): edda5b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -1
app.py CHANGED
@@ -1,9 +1,42 @@
 
1
  import gradio as gr
 
 
 
2
 
3
  name_list = ['microsoft/biogpt', 'stanford-crfm/BioMedLM']
4
 
5
  examples = [['COVID-19 is'],['A 65-year-old female patient with a past medical history of']]
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  def generate_biomedical(text):
8
  interfaces = [gr.Interface.load(name) for name in name_list]
9
  return [interface(text) for interface in interfaces]
@@ -28,4 +61,5 @@ with gr.Blocks() as demo:
28
  gr.Markdown("Let’s compare!")
29
  btn.click(generate_biomedical, inputs = input_text, outputs = [gr.Textbox(label=name_list[_], lines=4) for _ in range(len(name_list))])
30
 
31
- demo.launch(enable_queue=True, debug=True)
 
 
1
+ import os
2
  import gradio as gr
3
+ import torch
4
+ import numpy as np
5
+ from transformers import pipeline
6
 
7
  name_list = ['microsoft/biogpt', 'stanford-crfm/BioMedLM']
8
 
9
  examples = [['COVID-19 is'],['A 65-year-old female patient with a past medical history of']]
10
 
11
+ #import torch
12
+ #print(f"Is CUDA available: {torch.cuda.is_available()}")
13
+ #print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
14
+
15
+ pipe_biogpt = pipeline("text2text-generation", model="microsoft/biogpt")
16
+ pipe_biomedlm = pipeline("text2text-generation", model="stanford-crfm/BioMedLM")
17
+
18
+ title = "Compare generative biomedical LLMs!"
19
+ description = "This demo compares [BioGPT](https://huggingface.co/microsoft/biogpt) and [BioMedLM](https://huggingface.co/stanford-crfm/BioMedLM)."
20
+
21
+ def inference(text):
22
+ output_biogpt = pipe_biogpt(text, max_length=100)[0]["generated_text"]
23
+ output_biomedlm = pipe_biomedlm(text, max_length=100)[0]["generated_text"]
24
+ return [output_biogpt, output_biomedlm]
25
+
26
+ io = gr.Interface(
27
+ inference,
28
+ gr.Textbox(lines=3),
29
+ outputs=[
30
+ gr.Textbox(lines=3, label="BioGPT"),
31
+ gr.Textbox(lines=3, label="BioMedLM")
32
+ ],
33
+ title=title,
34
+ description=description,
35
+ examples=examples
36
+ )
37
+ io.launch()
38
+
39
+ """
40
  def generate_biomedical(text):
41
  interfaces = [gr.Interface.load(name) for name in name_list]
42
  return [interface(text) for interface in interfaces]
 
61
  gr.Markdown("Let’s compare!")
62
  btn.click(generate_biomedical, inputs = input_text, outputs = [gr.Textbox(label=name_list[_], lines=4) for _ in range(len(name_list))])
63
 
64
+ demo.launch(enable_queue=True, debug=True)
65
+ """