import gradio as gr demo = gr.Blocks() name_list = ['huggingface/microsoft/biogpt', 'huggingface/stanford-crfm/BioMedLM'] examples = [['COVID-19 is'],['A 65-year-old female patient with a past medical history of']] def generate_biomedical(text): interfaces = [gr.Interface.load(name) for name in name_list] return [interface(text) for interface in interfaces] def set_example(example: list) -> dict: return gr.Textbox.update(value=example[0]) with gr.Blocks() as demo: gr.Markdown("# Compare generative biomedical LLMs") with gr.Box(): with gr.Row(): with gr.Column(): input_text = gr.Textbox(label = "Write your text here", lines=4) with gr.Row(): btn = gr.Button("Generate") example_text = gr.Dataset(components=[input_text], samples=examples) example_text.click(fn=set_example, inputs = example_text, outputs= example_text.components) with gr.Column(): gr.Markdown("Let’s compare!") btn.click(generate_biomedical, inputs = input_text, outputs = [gr.Textbox(label=name_list[_], lines=4) for _ in range(len(name_list))]) demo.launch(enable_queue=True, debug=True)