Spaces:
Running
Running
Upload essential
Browse files- 6082308423334085331.jpg +0 -0
- a00e1c819a87fa56bb1e6058d9814bae.jpg +0 -0
- app.py +72 -0
- best_model.pth +3 -0
- model.py +168 -0
- requirements.txt +4 -0
6082308423334085331.jpg
ADDED
a00e1c819a87fa56bb1e6058d9814bae.jpg
ADDED
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from model import Trainer
|
3 |
+
import torch
|
4 |
+
import cv2
|
5 |
+
import tempfile
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
def predict_beauty_score(img):
|
9 |
+
trainer = Trainer()
|
10 |
+
|
11 |
+
# Save the numpy array as an image temporarily
|
12 |
+
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmp:
|
13 |
+
# Convert RGB to BGR for cv2
|
14 |
+
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
15 |
+
cv2.imwrite(tmp.name, img_bgr)
|
16 |
+
# Use the temporary file path
|
17 |
+
image_tensor = trainer.image_to_tensor(tmp.name)
|
18 |
+
|
19 |
+
prediction = trainer.predict(image_tensor)
|
20 |
+
score = prediction.item() * 100
|
21 |
+
|
22 |
+
# Decide which GIF to show based on the score
|
23 |
+
if score < 20:
|
24 |
+
gif_url = "https://i.pinimg.com/originals/9f/79/2a/9f792aed5881d409425de1a4361bc06b.gif"
|
25 |
+
elif score < 40:
|
26 |
+
gif_url = "https://i.pinimg.com/originals/ba/f5/c8/baf5c89c099b34decb7f4507b5144366.gif"
|
27 |
+
elif score < 60:
|
28 |
+
gif_url = "https://i.pinimg.com/originals/87/b6/dc/87b6dcfeec6f38a3836b1caf1d8fceab.gif"
|
29 |
+
elif score < 80:
|
30 |
+
gif_url = "https://i.pinimg.com/originals/3a/90/b8/3a90b87a337b79b9c8b7a3d9bf7250d7.gif"
|
31 |
+
else:
|
32 |
+
gif_url = "https://i.pinimg.com/originals/f6/02/01/f6020120d9e99f7b106c557cdc1edb1f.gif"
|
33 |
+
|
34 |
+
# Create formatted HTML outpu
|
35 |
+
html_output = f"""
|
36 |
+
<div style='text-align: center; padding: 20px;'>
|
37 |
+
<h2 style='color: #FFFFFF; margin-bottom: 10px;'>Score</h2>
|
38 |
+
<div style='font-size: 48px; font-weight: bold; color: #1a73e8;'>
|
39 |
+
{score:.3f}
|
40 |
+
</div>
|
41 |
+
<br/>
|
42 |
+
<div style='display: flex; justify-content: center;'>
|
43 |
+
<img src="{gif_url}" alt="GIF" width="200" height="200" />
|
44 |
+
</div>
|
45 |
+
<p>Enjoy the fun! :)</p>
|
46 |
+
</div>
|
47 |
+
"""
|
48 |
+
|
49 |
+
return html_output
|
50 |
+
|
51 |
+
# Create Gradio interface
|
52 |
+
demo = gr.Interface(
|
53 |
+
fn=predict_beauty_score,
|
54 |
+
inputs=gr.Image(), # Simple image input
|
55 |
+
outputs=gr.HTML(), # Using HTML output for custom formatting
|
56 |
+
title="Image Beauty Score Predictor",
|
57 |
+
description="""
|
58 |
+
<ul>
|
59 |
+
<li>Upload an image to get its beauty score prediction</li>
|
60 |
+
<li>Please remember that this is just for fun and is not intended to downplay anybody and I, as the model creator believe everyone is beautiful the way it is</li>
|
61 |
+
<li>Respect each other and most importantly have fun :)</li>
|
62 |
+
</ul>
|
63 |
+
""",
|
64 |
+
examples=[
|
65 |
+
["6082308423334085331.jpg"],
|
66 |
+
["a00e1c819a87fa56bb1e6058d9814bae.jpg"]
|
67 |
+
],
|
68 |
+
cache_examples=True
|
69 |
+
)
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
demo.launch()
|
best_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:defa774b8bc88ded913ee62d88aca8091398f852420e53b404de67bb51e7cea3
|
3 |
+
size 292234402
|
model.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.optim as optim
|
6 |
+
from torch.utils.data import DataLoader, TensorDataset, random_split
|
7 |
+
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
class BeautyScore(nn.Module):
|
13 |
+
def __init__(self, first_neuron):
|
14 |
+
super(BeautyScore, self).__init__()
|
15 |
+
|
16 |
+
self.first_out_channels = first_neuron
|
17 |
+
|
18 |
+
self.features = nn.Sequential(
|
19 |
+
# First Convolutional Block
|
20 |
+
nn.Conv2d(in_channels=3, out_channels=self.first_out_channels, kernel_size=3, padding=1), # dimension [batch_size, out_channel, 128, `128`] -> padding = 1
|
21 |
+
nn.ReLU(),
|
22 |
+
nn.BatchNorm2d(self.first_out_channels),
|
23 |
+
nn.MaxPool2d(2), # dimension [batch_size, out_channel, 64, 64]
|
24 |
+
|
25 |
+
# Second Convolutional Block
|
26 |
+
nn.Conv2d(in_channels=self.first_out_channels, out_channels=self.first_out_channels*2, kernel_size=3, padding=1), # dimension [batch_size, out_channel, 32, 32]
|
27 |
+
nn.ReLU(),
|
28 |
+
nn.BatchNorm2d(self.first_out_channels*2),
|
29 |
+
nn.MaxPool2d(2), # dimension [batch_size, out_channel*2, 32, 32]
|
30 |
+
|
31 |
+
# Third Convolutional Block
|
32 |
+
nn.Conv2d(in_channels=self.first_out_channels*2, out_channels=self.first_out_channels*4, kernel_size=3, padding=1), # dimension [batch_size, out_channel, 16, 16]
|
33 |
+
nn.ReLU(),
|
34 |
+
nn.BatchNorm2d(self.first_out_channels*4),
|
35 |
+
nn.MaxPool2d(2), # dimension [batch_size, out_channel*4, 16, 16]
|
36 |
+
|
37 |
+
)
|
38 |
+
|
39 |
+
# Calculate size of flattened features after the convolutional layers
|
40 |
+
self.flatten_size = self.first_out_channels * 4 * (128 // (2**3)) * (128 // (2**3)) # out_channel * (128 // 2^amount_of_max_pool) * (128 // 2^amount_of_max_pool)
|
41 |
+
|
42 |
+
self.classifier = nn.Sequential(
|
43 |
+
nn.Dropout(0.3),
|
44 |
+
nn.Linear(self.flatten_size, 256), # dimension [batch_size, 256]
|
45 |
+
nn.ReLU(),
|
46 |
+
nn.Dropout(0.3),
|
47 |
+
nn.Linear(256, 128), # dimension [batch_size, 128]
|
48 |
+
nn.ReLU(),
|
49 |
+
nn.Dropout(0.3),
|
50 |
+
nn.Linear(128, 1), # dimension [batch_size, 1]
|
51 |
+
nn.Sigmoid() # To get value from 0 to 1
|
52 |
+
)
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
x = self.features(x)
|
56 |
+
x = x.reshape(x.size(0), -1) # Flatten the tensor
|
57 |
+
x = self.classifier(x)
|
58 |
+
return x
|
59 |
+
|
60 |
+
class Trainer:
|
61 |
+
def __init__(self, train_loader = None, val_loader = None):
|
62 |
+
self.model = BeautyScore(first_neuron=256)
|
63 |
+
self.train_loader = train_loader
|
64 |
+
self.val_loader = val_loader
|
65 |
+
self.criterion = nn.MSELoss()
|
66 |
+
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=0.001)
|
67 |
+
self.scheduler = ReduceLROnPlateau(self.optimizer, mode='min', factor=0.1, patience=5, verbose=True)
|
68 |
+
self.num_epochs = 20
|
69 |
+
|
70 |
+
def load_data(self):
|
71 |
+
data_path = '/home/reynaldy/.cache/kagglehub/datasets/pranavchandane/scut-fbp5500-v2-facial-beauty-scores/versions/2/scut_fbp5500-cmprsd.npz'
|
72 |
+
|
73 |
+
data = np.load(data_path)
|
74 |
+
data['X'].shape, data['y'].shape
|
75 |
+
|
76 |
+
features_numpy = data['X'].astype(np.float32)
|
77 |
+
features_numpy = np.array([cv2.resize(img, (128, 128)) for img in features_numpy]) # Resize the images to 256x256
|
78 |
+
features = torch.tensor(features_numpy, dtype=torch.float32).to(device)
|
79 |
+
features = features.permute(0, 3, 1, 2).to(device)
|
80 |
+
|
81 |
+
label_numpy = data['y'].astype(np.float32)
|
82 |
+
labels = torch.tensor(label_numpy, dtype=torch.float32).to(device)
|
83 |
+
tensor_min = labels.min()
|
84 |
+
tensor_max = labels.max()
|
85 |
+
|
86 |
+
labels = (labels - tensor_min) / (tensor_max - tensor_min)
|
87 |
+
print("Finish loading data")
|
88 |
+
|
89 |
+
train_size = int(0.8 * len(features))
|
90 |
+
test_size = len(features) - train_size
|
91 |
+
|
92 |
+
train_dataset, test_dataset = random_split(TensorDataset(features, labels), [train_size, test_size])
|
93 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
94 |
+
val_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
|
95 |
+
return train_loader, val_loader
|
96 |
+
|
97 |
+
def train(self):
|
98 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
99 |
+
self.model.to(device)
|
100 |
+
self.model.train()
|
101 |
+
running_loss = 0.0
|
102 |
+
train_loader, _= self.load_data()
|
103 |
+
|
104 |
+
for batch_idx, (inputs, labels) in enumerate(train_loader):
|
105 |
+
inputs, labels = inputs.to(device), labels.to(device).float()
|
106 |
+
|
107 |
+
self.optimizer.zero_grad()
|
108 |
+
outputs = self.model(inputs)
|
109 |
+
loss = self.criterion(outputs.squeeze(), labels)
|
110 |
+
loss.backward()
|
111 |
+
self.optimizer.step()
|
112 |
+
|
113 |
+
running_loss += loss.item()
|
114 |
+
|
115 |
+
if (batch_idx + 1) % 20 == 0:
|
116 |
+
print(f"Batch {batch_idx + 1}/{len(train_loader)} Loss: {loss.item()}")
|
117 |
+
|
118 |
+
epoch_loss = running_loss / len(train_loader)
|
119 |
+
if self.scheduler:
|
120 |
+
self.scheduler.step(epoch_loss)
|
121 |
+
|
122 |
+
print(f"Training Loss: {epoch_loss:.4f}")
|
123 |
+
return epoch_loss
|
124 |
+
|
125 |
+
def validate(self):
|
126 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
127 |
+
self.model.to(device)
|
128 |
+
self.model.eval()
|
129 |
+
running_loss = 0.0
|
130 |
+
_, val_loader = self.load_data()
|
131 |
+
|
132 |
+
with torch.no_grad():
|
133 |
+
for batch_idx, (inputs, labels) in enumerate(val_loader):
|
134 |
+
inputs, labels = inputs.to(device), labels.to(device).float()
|
135 |
+
outputs = self.model(inputs)
|
136 |
+
loss = self.criterion(outputs.squeeze(), labels)
|
137 |
+
|
138 |
+
running_loss += loss.item()
|
139 |
+
|
140 |
+
epoch_loss = running_loss / len(val_loader)
|
141 |
+
print(f"Validation Loss: {epoch_loss:.4f}")
|
142 |
+
return epoch_loss
|
143 |
+
|
144 |
+
def image_to_tensor(self, image_path):
|
145 |
+
image = cv2.imread(image_path)
|
146 |
+
image = cv2.resize(image, (128, 128))
|
147 |
+
image = torch.tensor(image, dtype=torch.float32).to(device)
|
148 |
+
image = image.permute(2, 0, 1).unsqueeze(0)
|
149 |
+
return image
|
150 |
+
|
151 |
+
def predict(self, inputs):
|
152 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
153 |
+
self.model.load_state_dict(torch.load('best_model.pth', weights_only=True))
|
154 |
+
self.model.to(device)
|
155 |
+
self.model.eval()
|
156 |
+
inputs = inputs.to(device)
|
157 |
+
with torch.no_grad():
|
158 |
+
outputs = self.model(inputs)
|
159 |
+
return outputs
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
trainer = Trainer()
|
163 |
+
|
164 |
+
# Test the model
|
165 |
+
image_path = '6082308423334085331.jpg'
|
166 |
+
image_tensor = trainer.image_to_tensor(image_path)
|
167 |
+
prediction = trainer.predict(image_tensor)
|
168 |
+
print(f"Predicted Beauty Score: {prediction.item() * 100}")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
cv2
|
3 |
+
numpy
|
4 |
+
tempfile
|