Spaces:
Build error
Build error
Kaushik Rajan
commited on
Commit
·
28b6f0f
1
Parent(s):
7102d41
Feat: Add advanced simulation features and dynamic AI
Browse files
app.py
CHANGED
@@ -13,6 +13,7 @@ import numpy as np
|
|
13 |
import pandas as pd
|
14 |
import plotly.express as px
|
15 |
import spaces
|
|
|
16 |
|
17 |
# --- Game Configuration ---
|
18 |
INITIAL_BUDGET = 1000
|
@@ -117,6 +118,10 @@ class BusinessCompetitionEnv:
|
|
117 |
self.player_stats["budget"] = int(player_allocation["sales"] * player_sales_roi + player_remaining_budget)
|
118 |
self.ai_stats["budget"] = int(ai_allocation["sales"] * ai_sales_roi + ai_remaining_budget)
|
119 |
|
|
|
|
|
|
|
|
|
120 |
if self.quarter >= NUM_QUARTERS:
|
121 |
self.game_over = True
|
122 |
|
@@ -126,7 +131,7 @@ class BusinessCompetitionEnv:
|
|
126 |
|
127 |
# --- AI Logic ---
|
128 |
|
129 |
-
def ai_strategy(ai_stats, player_stats):
|
130 |
"""
|
131 |
A heuristic-based AI to simulate a strategic opponent.
|
132 |
This mimics the kind of robust strategy that would emerge from self-play,
|
@@ -139,39 +144,52 @@ def ai_strategy(ai_stats, player_stats):
|
|
139 |
allocation = {"rd": 0.33, "marketing": 0.34, "sales": 0.33}
|
140 |
|
141 |
# --- Strategic Adjustments based on SPIRAL principles ---
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
# 1. React to quality gap (long-term planning)
|
143 |
-
if ai_stats["product_quality"] < player_stats["product_quality"] -
|
144 |
allocation["rd"] += 0.2
|
145 |
allocation["marketing"] -= 0.1
|
146 |
allocation["sales"] -= 0.1
|
147 |
-
reasoning.append("My analysis indicates a growing product quality gap. I'm increasing R&D investment to innovate and secure a long-term competitive advantage.")
|
148 |
|
149 |
# 2. React to market share loss (short-term defense)
|
150 |
-
elif ai_stats["market_share"] < player_stats["market_share"] -
|
151 |
allocation["marketing"] += 0.2
|
152 |
allocation["rd"] -= 0.1
|
153 |
allocation["sales"] -= 0.1
|
154 |
-
reasoning.append("You've recently captured significant market share. I'm launching an aggressive marketing campaign to win back customers and regain my position.")
|
155 |
|
156 |
# 3. Exploit a quality advantage (pressing an advantage)
|
157 |
-
if ai_stats["product_quality"] > player_stats["product_quality"] +
|
158 |
allocation["marketing"] += 0.15
|
159 |
allocation["rd"] -= 0.15
|
160 |
-
reasoning.append(f"My product quality ({ai_stats['product_quality']:.0f}) is superior. I will leverage this with a marketing push to translate product leadership into market dominance.")
|
161 |
|
162 |
# 4. Manage budget (resource management)
|
163 |
-
if ai_stats["budget"] < player_stats["budget"] *
|
164 |
allocation["sales"] += 0.15
|
165 |
allocation["rd"] -= 0.15
|
166 |
-
reasoning.append("My projections show a potential budget shortfall. I am focusing on sales to ensure strong revenue growth for future quarters.")
|
167 |
|
168 |
if not reasoning:
|
169 |
-
reasoning.append("I am pursuing a balanced strategy, investing across R&D, Marketing, and Sales to ensure steady, long-term growth and market presence.")
|
170 |
|
171 |
# Normalize allocations
|
172 |
total_allocation = sum(allocation.values())
|
173 |
final_allocation = {key: int(budget * (val / total_allocation)) for key, val in allocation.items()}
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
# Ensure the sum is exactly the budget
|
176 |
diff = budget - sum(final_allocation.values())
|
177 |
final_allocation['sales'] += diff
|
@@ -208,6 +226,11 @@ def create_interface():
|
|
208 |
- **Multi-Turn Reasoning:** Observe the AI's rationale. It often makes decisions based on future projections (e.g., potential budget shortfalls or quality gaps), showcasing a capacity for long-term planning.
|
209 |
- **Zero-Sum Dynamics:** The simulation is a zero-sum game for market share, creating the competitive pressure that, according to the SPIRAL paper, is essential for incentivizing robust reasoning.
|
210 |
|
|
|
|
|
|
|
|
|
|
|
211 |
### How to Use the App
|
212 |
|
213 |
1. **Your Goal:** Achieve a higher market share than the AI by the end of 12 quarters.
|
@@ -255,9 +278,17 @@ def create_interface():
|
|
255 |
with gr.Row():
|
256 |
submit_btn = gr.Button("End Quarter", variant="primary")
|
257 |
new_game_btn = gr.Button("Start New Game")
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
gr.Markdown("### 🧠 AI Strategic Reasoning")
|
260 |
ai_reasoning_box = gr.Textbox("", label="AI Decision Rationale", lines=5, interactive=False)
|
|
|
|
|
|
|
261 |
|
262 |
def create_plots(history):
|
263 |
df = pd.DataFrame(history)
|
@@ -286,7 +317,8 @@ def create_interface():
|
|
286 |
gr.update(value=f"Your Budget: ${player_budget}"),
|
287 |
gr.update(), gr.update(), gr.update(), # Raw sliders
|
288 |
gr.update(), gr.update(), gr.update(), # Pct sliders
|
289 |
-
gr.update(interactive=True) # Submit button
|
|
|
290 |
)
|
291 |
|
292 |
if mode == "Percentages":
|
@@ -307,7 +339,7 @@ def create_interface():
|
|
307 |
return create_error_return(f"Error: Allocation (${rd_alloc_val + mkt_alloc_val + sales_alloc_val}) exceeds budget (${player_budget}).")
|
308 |
|
309 |
player_alloc = {"rd": rd_alloc_val, "marketing": mkt_alloc_val, "sales": sales_alloc_val}
|
310 |
-
ai_alloc, ai_reasoning = ai_strategy(env.ai_stats, env.player_stats)
|
311 |
env.ai_stats["last_reasoning"] = ai_reasoning
|
312 |
|
313 |
env.step(player_alloc, ai_alloc)
|
@@ -316,10 +348,16 @@ def create_interface():
|
|
316 |
plots = create_plots(state["history"])
|
317 |
|
318 |
submit_btn_update = gr.update(interactive=True)
|
|
|
319 |
if state["game_over"]:
|
320 |
winner = env.get_winner()
|
321 |
status_text = f"Game Over! Winner: {winner}. Final market share: You ({state['player_stats']['market_share']:.1f}%) vs AI ({state['ai_stats']['market_share']:.1f}%)."
|
322 |
submit_btn_update = gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
323 |
else:
|
324 |
status_text = f"End of Quarter {state['quarter']}. Your turn."
|
325 |
|
@@ -332,7 +370,8 @@ def create_interface():
|
|
332 |
gr.update(maximum=new_budget, value=int(new_budget/3)),
|
333 |
gr.update(maximum=new_budget, value=new_budget - 2 * int(new_budget/3)),
|
334 |
gr.update(value=33), gr.update(value=33), gr.update(value=34),
|
335 |
-
submit_btn_update
|
|
|
336 |
)
|
337 |
|
338 |
def on_new_game():
|
@@ -346,7 +385,8 @@ def create_interface():
|
|
346 |
gr.update(maximum=INITIAL_BUDGET, value=333),
|
347 |
gr.update(maximum=INITIAL_BUDGET, value=334),
|
348 |
gr.update(value=33), gr.update(value=33), gr.update(value=34),
|
349 |
-
gr.update(interactive=True)
|
|
|
350 |
)
|
351 |
|
352 |
def update_total_raw_display(rd, mkt, sales):
|
@@ -358,6 +398,49 @@ def create_interface():
|
|
358 |
def toggle_allocation_mode(mode):
|
359 |
return gr.update(visible=mode == "Raw Values"), gr.update(visible=mode == "Percentages")
|
360 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
# --- Event Handlers ---
|
362 |
submit_btn.click(
|
363 |
fn=game_step_and_update,
|
@@ -368,7 +451,8 @@ def create_interface():
|
|
368 |
player_budget_display,
|
369 |
rd_slider_raw, mkt_slider_raw, sales_slider_raw,
|
370 |
rd_slider_pct, mkt_slider_pct, sales_slider_pct,
|
371 |
-
submit_btn
|
|
|
372 |
]
|
373 |
)
|
374 |
|
@@ -381,7 +465,34 @@ def create_interface():
|
|
381 |
player_budget_display,
|
382 |
rd_slider_raw, mkt_slider_raw, sales_slider_raw,
|
383 |
rd_slider_pct, mkt_slider_pct, sales_slider_pct,
|
384 |
-
submit_btn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
]
|
386 |
)
|
387 |
|
@@ -392,6 +503,10 @@ def create_interface():
|
|
392 |
for slider in [rd_slider_pct, mkt_slider_pct, sales_slider_pct]:
|
393 |
slider.change(fn=update_total_pct_display, inputs=[rd_slider_pct, mkt_slider_pct, sales_slider_pct], outputs=total_allocated_pct_display)
|
394 |
|
|
|
|
|
|
|
|
|
395 |
# Handler for toggling allocation modes
|
396 |
allocation_mode_radio.change(
|
397 |
fn=toggle_allocation_mode,
|
@@ -399,11 +514,11 @@ def create_interface():
|
|
399 |
outputs=[raw_values_group, percentage_group]
|
400 |
)
|
401 |
|
402 |
-
demo.load(on_new_game, outputs=[game_env, status_box, ai_reasoning_box, plot_market_share, plot_budget, plot_quality, player_budget_display, rd_slider_raw, mkt_slider_raw, sales_slider_raw, rd_slider_pct, mkt_slider_pct, sales_slider_pct, submit_btn])
|
403 |
|
404 |
return demo
|
405 |
|
406 |
|
407 |
if __name__ == "__main__":
|
408 |
spiral_demo = create_interface()
|
409 |
-
spiral_demo.launch()
|
|
|
13 |
import pandas as pd
|
14 |
import plotly.express as px
|
15 |
import spaces
|
16 |
+
import json
|
17 |
|
18 |
# --- Game Configuration ---
|
19 |
INITIAL_BUDGET = 1000
|
|
|
118 |
self.player_stats["budget"] = int(player_allocation["sales"] * player_sales_roi + player_remaining_budget)
|
119 |
self.ai_stats["budget"] = int(ai_allocation["sales"] * ai_sales_roi + ai_remaining_budget)
|
120 |
|
121 |
+
# Error Handling: Clamp budgets to >=0
|
122 |
+
self.player_stats["budget"] = max(0, self.player_stats["budget"])
|
123 |
+
self.ai_stats["budget"] = max(0, self.ai_stats["budget"])
|
124 |
+
|
125 |
if self.quarter >= NUM_QUARTERS:
|
126 |
self.game_over = True
|
127 |
|
|
|
131 |
|
132 |
# --- AI Logic ---
|
133 |
|
134 |
+
def ai_strategy(ai_stats, player_stats, quarter):
|
135 |
"""
|
136 |
A heuristic-based AI to simulate a strategic opponent.
|
137 |
This mimics the kind of robust strategy that would emerge from self-play,
|
|
|
144 |
allocation = {"rd": 0.33, "marketing": 0.34, "sales": 0.33}
|
145 |
|
146 |
# --- Strategic Adjustments based on SPIRAL principles ---
|
147 |
+
# Dynamic thresholds: Tighten as game progresses (simulates adaptive curriculum)
|
148 |
+
quality_gap_threshold = 15 - (quarter // 3) # E.g., starts at 15, drops to 9 by quarter 9
|
149 |
+
market_share_threshold = 10 - (quarter // 4) # Starts at 10, drops to 7 by quarter 8
|
150 |
+
quality_advantage_threshold = 20 - (quarter // 3)
|
151 |
+
budget_threshold = 0.8 + (quarter / 100.0) # Slightly increases to make AI more conservative later
|
152 |
+
|
153 |
# 1. React to quality gap (long-term planning)
|
154 |
+
if ai_stats["product_quality"] < player_stats["product_quality"] - quality_gap_threshold:
|
155 |
allocation["rd"] += 0.2
|
156 |
allocation["marketing"] -= 0.1
|
157 |
allocation["sales"] -= 0.1
|
158 |
+
reasoning.append(f"Quarter {quarter}: My analysis indicates a growing product quality gap (threshold: {quality_gap_threshold}). I'm increasing R&D investment to innovate and secure a long-term competitive advantage.")
|
159 |
|
160 |
# 2. React to market share loss (short-term defense)
|
161 |
+
elif ai_stats["market_share"] < player_stats["market_share"] - market_share_threshold:
|
162 |
allocation["marketing"] += 0.2
|
163 |
allocation["rd"] -= 0.1
|
164 |
allocation["sales"] -= 0.1
|
165 |
+
reasoning.append(f"Quarter {quarter}: You've recently captured significant market share (threshold: {market_share_threshold}). I'm launching an aggressive marketing campaign to win back customers and regain my position.")
|
166 |
|
167 |
# 3. Exploit a quality advantage (pressing an advantage)
|
168 |
+
if ai_stats["product_quality"] > player_stats["product_quality"] + quality_advantage_threshold:
|
169 |
allocation["marketing"] += 0.15
|
170 |
allocation["rd"] -= 0.15
|
171 |
+
reasoning.append(f"Quarter {quarter}: My product quality ({ai_stats['product_quality']:.0f}) is superior (threshold: {quality_advantage_threshold}). I will leverage this with a marketing push to translate product leadership into market dominance.")
|
172 |
|
173 |
# 4. Manage budget (resource management)
|
174 |
+
if ai_stats["budget"] < player_stats["budget"] * budget_threshold:
|
175 |
allocation["sales"] += 0.15
|
176 |
allocation["rd"] -= 0.15
|
177 |
+
reasoning.append(f"Quarter {quarter}: My projections show a potential budget shortfall (threshold: {budget_threshold:.2f}). I am focusing on sales to ensure strong revenue growth for future quarters.")
|
178 |
|
179 |
if not reasoning:
|
180 |
+
reasoning.append(f"Quarter {quarter}: I am pursuing a balanced strategy, investing across R&D, Marketing, and Sales to ensure steady, long-term growth and market presence.")
|
181 |
|
182 |
# Normalize allocations
|
183 |
total_allocation = sum(allocation.values())
|
184 |
final_allocation = {key: int(budget * (val / total_allocation)) for key, val in allocation.items()}
|
185 |
|
186 |
+
# Simulate RAE-inspired stability: Average with a "role-reversed" allocation
|
187 |
+
role_reversed_alloc = {"rd": allocation["rd"], "marketing": allocation["sales"], "sales": allocation["marketing"]} # Simple swap for variance reduction
|
188 |
+
reversed_total = sum(role_reversed_alloc.values())
|
189 |
+
reversed_final = {key: int(budget * (val / reversed_total)) for key, val in role_reversed_alloc.items()}
|
190 |
+
for key in final_allocation:
|
191 |
+
final_allocation[key] = int((final_allocation[key] + reversed_final[key]) / 2)
|
192 |
+
|
193 |
# Ensure the sum is exactly the budget
|
194 |
diff = budget - sum(final_allocation.values())
|
195 |
final_allocation['sales'] += diff
|
|
|
226 |
- **Multi-Turn Reasoning:** Observe the AI's rationale. It often makes decisions based on future projections (e.g., potential budget shortfalls or quality gaps), showcasing a capacity for long-term planning.
|
227 |
- **Zero-Sum Dynamics:** The simulation is a zero-sum game for market share, creating the competitive pressure that, according to the SPIRAL paper, is essential for incentivizing robust reasoning.
|
228 |
|
229 |
+
### Key Links to SPIRAL Paper Takeaways
|
230 |
+
- **Transferable Reasoning:** Your R&D investments build long-term planning skills, transferable to real-world logic problems (Takeaway 2).
|
231 |
+
- **Diverse Skills:** Marketing encourages probabilistic thinking (like Poker), while Sales focuses on resource foresight (Takeaway 4).
|
232 |
+
- **Synergy from Multi-Game Training:** Combining these creates a well-rounded strategy, better than focusing on one area (Takeaway 5).
|
233 |
+
|
234 |
### How to Use the App
|
235 |
|
236 |
1. **Your Goal:** Achieve a higher market share than the AI by the end of 12 quarters.
|
|
|
278 |
with gr.Row():
|
279 |
submit_btn = gr.Button("End Quarter", variant="primary")
|
280 |
new_game_btn = gr.Button("Start New Game")
|
281 |
+
ai_vs_ai_btn = gr.Button("Simulate AI vs AI")
|
282 |
+
|
283 |
+
with gr.Row():
|
284 |
+
save_btn = gr.Button("Save Game")
|
285 |
+
load_file = gr.File(label="Load Game JSON")
|
286 |
|
287 |
gr.Markdown("### 🧠 AI Strategic Reasoning")
|
288 |
ai_reasoning_box = gr.Textbox("", label="AI Decision Rationale", lines=5, interactive=False)
|
289 |
+
|
290 |
+
gr.Markdown("### 📝 Post-Game Analysis")
|
291 |
+
analysis_box = gr.Textbox("", label="Strategy Insights", lines=3, interactive=False)
|
292 |
|
293 |
def create_plots(history):
|
294 |
df = pd.DataFrame(history)
|
|
|
317 |
gr.update(value=f"Your Budget: ${player_budget}"),
|
318 |
gr.update(), gr.update(), gr.update(), # Raw sliders
|
319 |
gr.update(), gr.update(), gr.update(), # Pct sliders
|
320 |
+
gr.update(interactive=True), # Submit button
|
321 |
+
gr.update() # Analysis box
|
322 |
)
|
323 |
|
324 |
if mode == "Percentages":
|
|
|
339 |
return create_error_return(f"Error: Allocation (${rd_alloc_val + mkt_alloc_val + sales_alloc_val}) exceeds budget (${player_budget}).")
|
340 |
|
341 |
player_alloc = {"rd": rd_alloc_val, "marketing": mkt_alloc_val, "sales": sales_alloc_val}
|
342 |
+
ai_alloc, ai_reasoning = ai_strategy(env.ai_stats, env.player_stats, env.quarter + 1) # Pass next quarter
|
343 |
env.ai_stats["last_reasoning"] = ai_reasoning
|
344 |
|
345 |
env.step(player_alloc, ai_alloc)
|
|
|
348 |
plots = create_plots(state["history"])
|
349 |
|
350 |
submit_btn_update = gr.update(interactive=True)
|
351 |
+
analysis_text = ""
|
352 |
if state["game_over"]:
|
353 |
winner = env.get_winner()
|
354 |
status_text = f"Game Over! Winner: {winner}. Final market share: You ({state['player_stats']['market_share']:.1f}%) vs AI ({state['ai_stats']['market_share']:.1f}%)."
|
355 |
submit_btn_update = gr.update(interactive=False)
|
356 |
+
# Post-game analysis
|
357 |
+
final_history = state["history"][-1]
|
358 |
+
rd_invest = final_history["Player Product Quality"] - INITIAL_PRODUCT_QUALITY
|
359 |
+
sales_focus = final_history["Player Budget"] > INITIAL_BUDGET
|
360 |
+
analysis_text = f"Post-Game Analysis: Your strategy showed synergy by balancing skills—e.g., high R&D (quality gain: {rd_invest}) with Sales (budget growth: {sales_focus}) led to transferable reasoning advantages."
|
361 |
else:
|
362 |
status_text = f"End of Quarter {state['quarter']}. Your turn."
|
363 |
|
|
|
370 |
gr.update(maximum=new_budget, value=int(new_budget/3)),
|
371 |
gr.update(maximum=new_budget, value=new_budget - 2 * int(new_budget/3)),
|
372 |
gr.update(value=33), gr.update(value=33), gr.update(value=34),
|
373 |
+
submit_btn_update,
|
374 |
+
analysis_text
|
375 |
)
|
376 |
|
377 |
def on_new_game():
|
|
|
385 |
gr.update(maximum=INITIAL_BUDGET, value=333),
|
386 |
gr.update(maximum=INITIAL_BUDGET, value=334),
|
387 |
gr.update(value=33), gr.update(value=33), gr.update(value=34),
|
388 |
+
gr.update(interactive=True),
|
389 |
+
""
|
390 |
)
|
391 |
|
392 |
def update_total_raw_display(rd, mkt, sales):
|
|
|
398 |
def toggle_allocation_mode(mode):
|
399 |
return gr.update(visible=mode == "Raw Values"), gr.update(visible=mode == "Percentages")
|
400 |
|
401 |
+
def adjust_pct_sliders(rd, mkt):
|
402 |
+
return gr.update(value=100 - rd - mkt)
|
403 |
+
|
404 |
+
def simulate_ai_vs_ai():
|
405 |
+
env = BusinessCompetitionEnv()
|
406 |
+
all_reasoning = []
|
407 |
+
for q in range(1, NUM_QUARTERS + 1):
|
408 |
+
player_alloc, player_reasoning = ai_strategy(env.player_stats, env.ai_stats, q) # Player as AI copy
|
409 |
+
ai_alloc, ai_reasoning = ai_strategy(env.ai_stats, env.player_stats, q)
|
410 |
+
env.step(player_alloc, ai_alloc)
|
411 |
+
all_reasoning.append(f"Quarter {q}: AI1 Reasoning: {player_reasoning} | AI2 Reasoning: {ai_reasoning}")
|
412 |
+
state = env.get_state()
|
413 |
+
winner = env.get_winner()
|
414 |
+
plots = create_plots(state["history"])
|
415 |
+
analysis_text = f"AI vs AI Simulation: Synergy in self-play led to balanced strategies. Winner: {winner}."
|
416 |
+
return "\n\n".join(all_reasoning), *plots, f"AI vs AI Simulation Complete! Winner: {winner}", analysis_text
|
417 |
+
|
418 |
+
def save_game(env):
|
419 |
+
return json.dumps(env.get_state()["history"])
|
420 |
+
|
421 |
+
def load_game(file):
|
422 |
+
if file is None:
|
423 |
+
return None, "No file uploaded."
|
424 |
+
with open(file.name, "r") as f:
|
425 |
+
history = json.load(f)
|
426 |
+
env = BusinessCompetitionEnv()
|
427 |
+
env.history = history
|
428 |
+
env.quarter = history[-1]["Quarter"]
|
429 |
+
env.player_stats = {
|
430 |
+
"budget": history[-1]["Player Budget"],
|
431 |
+
"market_share": history[-1]["Player Market Share"],
|
432 |
+
"product_quality": history[-1]["Player Product Quality"],
|
433 |
+
}
|
434 |
+
env.ai_stats = {
|
435 |
+
"budget": history[-1]["AI Budget"],
|
436 |
+
"market_share": history[-1]["AI Market Share"],
|
437 |
+
"product_quality": history[-1]["AI Product Quality"],
|
438 |
+
}
|
439 |
+
env.game_over = env.quarter >= NUM_QUARTERS
|
440 |
+
plots = create_plots(env.history)
|
441 |
+
status = f"Loaded game at Quarter {env.quarter}. Your move." if not env.game_over else "Loaded completed game."
|
442 |
+
return env, status, "", *plots, gr.update(value=f"Your Budget: ${env.player_stats['budget']}"), *([gr.update()] * 6), gr.update(interactive=not env.game_over), ""
|
443 |
+
|
444 |
# --- Event Handlers ---
|
445 |
submit_btn.click(
|
446 |
fn=game_step_and_update,
|
|
|
451 |
player_budget_display,
|
452 |
rd_slider_raw, mkt_slider_raw, sales_slider_raw,
|
453 |
rd_slider_pct, mkt_slider_pct, sales_slider_pct,
|
454 |
+
submit_btn,
|
455 |
+
analysis_box
|
456 |
]
|
457 |
)
|
458 |
|
|
|
465 |
player_budget_display,
|
466 |
rd_slider_raw, mkt_slider_raw, sales_slider_raw,
|
467 |
rd_slider_pct, mkt_slider_pct, sales_slider_pct,
|
468 |
+
submit_btn,
|
469 |
+
analysis_box
|
470 |
+
]
|
471 |
+
)
|
472 |
+
|
473 |
+
ai_vs_ai_btn.click(
|
474 |
+
fn=simulate_ai_vs_ai,
|
475 |
+
inputs=[],
|
476 |
+
outputs=[ai_reasoning_box, plot_market_share, plot_budget, plot_quality, status_box, analysis_box]
|
477 |
+
)
|
478 |
+
|
479 |
+
save_btn.click(
|
480 |
+
fn=save_game,
|
481 |
+
inputs=game_env,
|
482 |
+
outputs=gr.File(label="Download Game JSON")
|
483 |
+
)
|
484 |
+
|
485 |
+
load_file.change(
|
486 |
+
fn=load_game,
|
487 |
+
inputs=load_file,
|
488 |
+
outputs=[
|
489 |
+
game_env, status_box, ai_reasoning_box,
|
490 |
+
plot_market_share, plot_budget, plot_quality,
|
491 |
+
player_budget_display,
|
492 |
+
rd_slider_raw, mkt_slider_raw, sales_slider_raw,
|
493 |
+
rd_slider_pct, mkt_slider_pct, sales_slider_pct,
|
494 |
+
submit_btn,
|
495 |
+
analysis_box
|
496 |
]
|
497 |
)
|
498 |
|
|
|
503 |
for slider in [rd_slider_pct, mkt_slider_pct, sales_slider_pct]:
|
504 |
slider.change(fn=update_total_pct_display, inputs=[rd_slider_pct, mkt_slider_pct, sales_slider_pct], outputs=total_allocated_pct_display)
|
505 |
|
506 |
+
# Auto-adjust percentage sliders
|
507 |
+
rd_slider_pct.change(fn=adjust_pct_sliders, inputs=[rd_slider_pct, mkt_slider_pct], outputs=sales_slider_pct)
|
508 |
+
mkt_slider_pct.change(fn=adjust_pct_sliders, inputs=[rd_slider_pct, mkt_slider_pct], outputs=sales_slider_pct)
|
509 |
+
|
510 |
# Handler for toggling allocation modes
|
511 |
allocation_mode_radio.change(
|
512 |
fn=toggle_allocation_mode,
|
|
|
514 |
outputs=[raw_values_group, percentage_group]
|
515 |
)
|
516 |
|
517 |
+
demo.load(on_new_game, outputs=[game_env, status_box, ai_reasoning_box, plot_market_share, plot_budget, plot_quality, player_budget_display, rd_slider_raw, mkt_slider_raw, sales_slider_raw, rd_slider_pct, mkt_slider_pct, sales_slider_pct, submit_btn, analysis_box])
|
518 |
|
519 |
return demo
|
520 |
|
521 |
|
522 |
if __name__ == "__main__":
|
523 |
spiral_demo = create_interface()
|
524 |
+
spiral_demo.launch()
|