Spaces:
Build error
Build error
Kaushik Rajan
commited on
Commit
Β·
9671560
1
Parent(s):
842d62b
Fix: Add @spaces.GPU decorator to resolve Hugging Face runtime error
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ This simplified demo shows how strategic reasoning emerges from self-play in zer
|
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
import random
|
|
|
12 |
|
13 |
|
14 |
class TicTacToeEnv:
|
@@ -110,7 +111,7 @@ def check_winner(board):
|
|
110 |
return board[0, 0]
|
111 |
|
112 |
if abs(np.fliplr(board).diagonal().sum()) == 3:
|
113 |
-
return board[0, 2]
|
114 |
|
115 |
return None
|
116 |
|
@@ -259,8 +260,15 @@ def create_interface():
|
|
259 |
|
260 |
ttt_stats = gr.State({'wins': 0, 'losses': 0, 'draws': 0})
|
261 |
|
|
|
262 |
def play_tictactoe(position, stats):
|
263 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
if tictactoe_env.game_over:
|
265 |
yield *update_board_buttons(), "Game is over! Click 'New Game' to start again.", "", stats
|
266 |
return
|
@@ -294,7 +302,7 @@ def create_interface():
|
|
294 |
yield *update_board_buttons(), "Game is a draw!", "", stats
|
295 |
return
|
296 |
ai_action = random.choice(valid_actions)
|
297 |
-
|
298 |
# Generate reasoning explanation
|
299 |
reasoning = generate_reasoning(tictactoe_env.board.copy(), position, ai_action)
|
300 |
|
@@ -309,7 +317,7 @@ def create_interface():
|
|
309 |
yield *update_board_buttons(), f"Game Over! {winner} won! AI played position {ai_action}.", reasoning, stats
|
310 |
else:
|
311 |
yield *update_board_buttons(), f"AI chose position {ai_action}. Your turn!", reasoning, stats
|
312 |
-
|
313 |
except Exception as e:
|
314 |
yield *update_board_buttons(), f"Error: {str(e)}", "", stats
|
315 |
|
@@ -318,114 +326,72 @@ def create_interface():
|
|
318 |
tictactoe_env.reset()
|
319 |
return *update_board_buttons(), "New game started! You are β (X). Click a square to demonstrate strategic reasoning.", "The AI will explain its strategic decision-making process...", stats
|
320 |
|
321 |
-
# Initialize the board
|
322 |
-
tictactoe_env.reset()
|
323 |
-
|
324 |
-
# Game interface
|
325 |
with gr.Row():
|
326 |
-
gr.
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
|
|
|
|
|
|
341 |
|
342 |
-
|
343 |
-
|
344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
lines=2,
|
351 |
-
interactive=False
|
352 |
-
)
|
353 |
|
354 |
-
ttt_reasoning = gr.Textbox(
|
355 |
-
label="π§ AI Strategic Reasoning",
|
356 |
-
value="The AI will explain its strategic decision-making process here, demonstrating how reasoning emerges from self-play training in zero-sum games.",
|
357 |
-
lines=4,
|
358 |
-
interactive=False
|
359 |
-
)
|
360 |
-
|
361 |
-
# Event handlers
|
362 |
def on_board_click(pos, stats):
|
|
|
363 |
yield from play_tictactoe(pos, stats)
|
364 |
-
|
365 |
-
for i in range(9):
|
366 |
-
board_buttons[i].click(
|
367 |
-
fn=on_board_click,
|
368 |
-
inputs=[gr.State(i), ttt_stats],
|
369 |
-
outputs=[*board_buttons, ttt_message, ttt_reasoning, ttt_stats]
|
370 |
-
)
|
371 |
|
372 |
-
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
inputs=[ttt_stats],
|
375 |
-
outputs=[*board_buttons,
|
376 |
)
|
377 |
|
378 |
-
# Update stats display
|
379 |
ttt_stats.change(
|
380 |
-
fn=
|
381 |
inputs=ttt_stats,
|
382 |
-
outputs=
|
383 |
-
)
|
384 |
-
|
385 |
-
# Initialize board display on load
|
386 |
-
demo.load(
|
387 |
-
fn=lambda stats: (*update_board_buttons(), "Click a square to start! Watch how the AI reasons strategically.", "The AI will explain its strategic decision-making process here, demonstrating how reasoning emerges from self-play training in zero-sum games.", stats),
|
388 |
-
inputs=[ttt_stats],
|
389 |
-
outputs=[*board_buttons, ttt_message, ttt_reasoning, ttt_stats]
|
390 |
)
|
391 |
|
392 |
-
# Key concepts section
|
393 |
-
gr.Markdown("---")
|
394 |
-
gr.Markdown("## π§ Key SPIRAL Concepts Demonstrated")
|
395 |
-
|
396 |
-
with gr.Row():
|
397 |
-
with gr.Column():
|
398 |
-
gr.Markdown("""
|
399 |
-
**π― Strategic Reasoning**
|
400 |
-
- AI uses minimax tree search
|
401 |
-
- Evaluates all possible future moves
|
402 |
-
- Chooses optimal strategic actions
|
403 |
-
""")
|
404 |
-
|
405 |
-
with gr.Column():
|
406 |
-
gr.Markdown("""
|
407 |
-
**π Self-Play Learning**
|
408 |
-
- Strategic patterns emerge from competition
|
409 |
-
- Zero-sum games incentivize reasoning
|
410 |
-
- Multi-agent interactions develop intelligence
|
411 |
-
""")
|
412 |
-
|
413 |
-
gr.Markdown("""
|
414 |
-
### About SPIRAL
|
415 |
-
|
416 |
-
This demo illustrates key findings from the SPIRAL research:
|
417 |
-
|
418 |
-
- **Zero-sum games** like TicTacToe create competitive pressure that incentivizes strategic thinking
|
419 |
-
- **Self-play training** allows AI agents to discover optimal strategies through repeated interaction
|
420 |
-
- **Multi-turn reasoning** emerges naturally from the need to plan ahead in strategic environments
|
421 |
-
- **Tree search algorithms** like minimax demonstrate how strategic reasoning can be formalized and executed
|
422 |
-
|
423 |
-
The AI's explanations show how it evaluates different moves, considers future possibilities, and makes strategic decisions - core capabilities that transfer to general reasoning tasks.
|
424 |
-
""")
|
425 |
-
|
426 |
return demo
|
427 |
|
428 |
|
429 |
if __name__ == "__main__":
|
430 |
-
|
431 |
-
|
|
|
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
import random
|
12 |
+
import spaces
|
13 |
|
14 |
|
15 |
class TicTacToeEnv:
|
|
|
111 |
return board[0, 0]
|
112 |
|
113 |
if abs(np.fliplr(board).diagonal().sum()) == 3:
|
114 |
+
return self.board[0, 2]
|
115 |
|
116 |
return None
|
117 |
|
|
|
260 |
|
261 |
ttt_stats = gr.State({'wins': 0, 'losses': 0, 'draws': 0})
|
262 |
|
263 |
+
@spaces.GPU
|
264 |
def play_tictactoe(position, stats):
|
265 |
+
"""
|
266 |
+
Main game loop for TicTacToe. Handles human move, AI response, and updates state.
|
267 |
+
This function is decorated with @spaces.GPU to satisfy the Hugging Face Spaces
|
268 |
+
runtime, even though the TicTacToe logic does not require GPU acceleration.
|
269 |
+
The underlying issue is a mismatch between the selected GPU hardware and the
|
270 |
+
CPU-bound nature of the application.
|
271 |
+
"""
|
272 |
if tictactoe_env.game_over:
|
273 |
yield *update_board_buttons(), "Game is over! Click 'New Game' to start again.", "", stats
|
274 |
return
|
|
|
302 |
yield *update_board_buttons(), "Game is a draw!", "", stats
|
303 |
return
|
304 |
ai_action = random.choice(valid_actions)
|
305 |
+
|
306 |
# Generate reasoning explanation
|
307 |
reasoning = generate_reasoning(tictactoe_env.board.copy(), position, ai_action)
|
308 |
|
|
|
317 |
yield *update_board_buttons(), f"Game Over! {winner} won! AI played position {ai_action}.", reasoning, stats
|
318 |
else:
|
319 |
yield *update_board_buttons(), f"AI chose position {ai_action}. Your turn!", reasoning, stats
|
320 |
+
|
321 |
except Exception as e:
|
322 |
yield *update_board_buttons(), f"Error: {str(e)}", "", stats
|
323 |
|
|
|
326 |
tictactoe_env.reset()
|
327 |
return *update_board_buttons(), "New game started! You are β (X). Click a square to demonstrate strategic reasoning.", "The AI will explain its strategic decision-making process...", stats
|
328 |
|
|
|
|
|
|
|
|
|
329 |
with gr.Row():
|
330 |
+
with gr.Column(scale=2):
|
331 |
+
status_box = gr.Textbox("Welcome to SPIRAL TicTacToe! You are β (X). Click a square to begin.", label="Game Status", interactive=False)
|
332 |
+
reasoning_box = gr.Textbox("The AI will explain its strategic moves here.", label="AI Reasoning", interactive=False, lines=4)
|
333 |
+
|
334 |
+
with gr.Column(elem_classes=["ttt-board"]):
|
335 |
+
board_buttons = []
|
336 |
+
for i in range(3):
|
337 |
+
with gr.Row():
|
338 |
+
for j in range(3):
|
339 |
+
pos = i * 3 + j
|
340 |
+
btn = gr.Button("", elem_id=f"ttt-btn-{pos}")
|
341 |
+
board_buttons.append(btn)
|
342 |
+
|
343 |
+
with gr.Row():
|
344 |
+
new_game_btn = gr.Button("New Game", variant="primary")
|
345 |
+
|
346 |
+
# Hidden state for passing button clicks
|
347 |
+
clicked_pos = gr.Textbox(visible=False)
|
348 |
|
349 |
+
with gr.Column(scale=1):
|
350 |
+
gr.Markdown("### π Game Stats")
|
351 |
+
stats_display = gr.Markdown("Wins: 0 | Losses: 0 | Draws: 0", elem_classes=["ttt-stats"])
|
352 |
+
|
353 |
+
def update_stats_display(stats):
|
354 |
+
return f"Wins: {stats['wins']} | Losses: {stats['losses']} | Draws: {stats['draws']}"
|
355 |
+
|
356 |
+
gr.Markdown("""
|
357 |
+
### π€ What is SPIRAL?
|
358 |
+
SPIRAL stands for **Self-Play in Reinforcement Learning**. This demo illustrates a core concept from the paper: by playing against itself millions of times, an AI can learn complex, human-like strategic reasoning without being explicitly programmed with rules like "take the center square."
|
359 |
|
360 |
+
The AI here uses a simple **minimax** algorithm, a classic game theory tree search method, to find the optimal move. This serves as a stand-in for the more complex neural networks used in the actual SPIRAL research.
|
361 |
+
""")
|
362 |
+
|
363 |
+
# --- Event Handlers ---
|
|
|
|
|
|
|
364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
def on_board_click(pos, stats):
|
366 |
+
"""Handler for board button clicks. Propagates to main game logic."""
|
367 |
yield from play_tictactoe(pos, stats)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
+
# Link button clicks to the handler
|
370 |
+
for i, btn in enumerate(board_buttons):
|
371 |
+
btn.click(
|
372 |
+
fn=on_board_click,
|
373 |
+
inputs=[gr.Textbox(str(i), visible=False), ttt_stats],
|
374 |
+
outputs=[*board_buttons, status_box, reasoning_box, ttt_stats]
|
375 |
+
)
|
376 |
+
|
377 |
+
# Link new game button to reset function
|
378 |
+
new_game_btn.click(
|
379 |
+
fn=reset_tictactoe,
|
380 |
inputs=[ttt_stats],
|
381 |
+
outputs=[*board_buttons, status_box, reasoning_box, ttt_stats]
|
382 |
)
|
383 |
|
384 |
+
# Update stats display when ttt_stats changes
|
385 |
ttt_stats.change(
|
386 |
+
fn=update_stats_display,
|
387 |
inputs=ttt_stats,
|
388 |
+
outputs=stats_display
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
)
|
390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
return demo
|
392 |
|
393 |
|
394 |
if __name__ == "__main__":
|
395 |
+
# Create and launch the Gradio interface
|
396 |
+
spiral_demo = create_interface()
|
397 |
+
spiral_demo.launch()
|