Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,024 Bytes
226a7b7 1885732 b45db27 5850fbf b45db27 f223a90 c9c788f f223a90 b45db27 2efc5d6 b45db27 c9c788f b45db27 2efc5d6 b45db27 c9c788f 2efc5d6 b45db27 2efc5d6 b45db27 a06684e b45db27 2efc5d6 b45db27 c9c788f 4d03169 c9c788f b45db27 7e3e351 b45db27 2c40df6 2efc5d6 79dca31 87d81cd 79dca31 87d81cd 79dca31 b45db27 c9c788f b45db27 2efc5d6 b45db27 2efc5d6 b45db27 2efc5d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import os
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm
# Enable TQDM progress tracking
tqdm.monitor_interval = 0
# Load the diffusion pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"kayfahaarukku/UrangDiffusion-1.0",
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Function to generate an image
@spaces.GPU # Adjust the duration as needed
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
pipe.to('cuda') # Move the model to GPU when the function is called
if randomize_seed:
seed = random.randint(0, 99999999)
if use_defaults:
prompt = f"{prompt}, masterpiece, best quality"
negative_prompt = f"nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, {negative_prompt}"
generator = torch.manual_seed(seed)
def callback(step, timestep, latents):
progress(step / num_inference_steps)
return
width, height = map(int, resolution.split('x'))
image = pipe(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
callback=callback,
callback_steps=1
).images[0]
torch.cuda.empty_cache()
return image, seed, prompt, negative_prompt, guidance_scale, num_inference_steps, resolution
# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
image, seed, prompt, negative_prompt, guidance_scale, num_inference_steps, resolution = generate_image(
prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress
)
generation_details = (
f"{prompt}\n"
f"Negative Prompt: {negative_prompt}\n"
f"Steps: {num_inference_steps}\n"
f"Sampler: Euler a\n"
f"CFG scale: {guidance_scale}\n"
f"Seed: {seed}\n"
f"Size: {resolution}"
)
return image, seed, gr.update(value=seed), gr.update(visible=True), generation_details
def reset_inputs():
return (
gr.update(value=''),
gr.update(value=''),
gr.update(value=True),
gr.update(value='832x1216'),
gr.update(value=7),
gr.update(value=28),
gr.update(value=0),
gr.update(value=True),
gr.update(visible=False),
""
)
with gr.Blocks(title="UrangDiffusion 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
gr.HTML(
"<h1>UrangDiffusion 1.0 Demo</h1>"
"This demo is intended to showcase what the model is capable of and is not intended to be the main generation platform. Results produced with Diffusers are not the best, and it's highly recommended for you to get the model running inside Stable Diffusion WebUI or ComfyUI."
)
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
resolution_input = gr.Radio(
choices=[
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
"1344x768", "768x1344", "1536x640", "640x1536"
],
label="Resolution",
value="832x1216"
)
guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7)
num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28)
seed_input = gr.Slider(minimum=0, maximum=99999999, step=1, label="Seed", value=0, interactive=True)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
generate_button = gr.Button("Generate")
reset_button = gr.Button("Reset")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Image")
generation_details_output = gr.Markdown("", visible=False)
gr.Markdown(
"""
### Recommended prompt formatting:
`1girl/1boy, character name, from what series, everything else in any order, masterpiece, best quality`
**PS:** `masterpiece, best quality` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled
### Recommended settings:
- Steps: 25-30
- CFG: 5-7
"""
)
generate_button.click(
interface_fn,
inputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
],
outputs=[output_image, seed_input, gr.update(value=seed), generation_details_output]
)
reset_button.click(
reset_inputs,
inputs=[],
outputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, generation_details_output, gr.update(value="")
]
)
demo.queue(max_size=20).launch(share=False)
|