Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,271 Bytes
226a7b7 4f0c4ed b45db27 5850fbf b45db27 0ea7716 c9c788f 0ea7716 b45db27 0ea7716 b45db27 1f4d65d b45db27 c9c788f b45db27 0ea7716 b45db27 c9c788f 0ea7716 1f4d65d 0ea7716 1f4d65d b45db27 1f4d65d b45db27 a06684e b45db27 1f4d65d b45db27 c9c788f 4d03169 c9c788f b45db27 7e3e351 b45db27 2c40df6 0ea7716 79dca31 87d81cd 79dca31 87d81cd 79dca31 b45db27 c9c788f b45db27 1f4d65d b45db27 c9c788f b45db27 4f0c4ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm
# Enable TQDM progress tracking
tqdm.monitor_interval = 0
# Load the diffusion pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"kayfahaarukku/UrangDiffusion-1.0",
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Function to generate an image
@spaces.GPU
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
pipe.to('cuda')
if randomize_seed:
seed = random.randint(0, 99999999)
original_prompt = prompt
original_negative_prompt = negative_prompt
if use_defaults:
prompt = f"{prompt}, masterpiece, best quality"
negative_prompt = f"nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, {negative_prompt}"
generator = torch.manual_seed(seed)
def callback(step, timestep, latents):
progress(step / num_inference_steps)
return
width, height = map(int, resolution.split('x'))
image = pipe(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
callback=callback,
callback_steps=1
).images[0]
torch.cuda.empty_cache()
return image, seed, original_prompt, original_negative_prompt
# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
image, seed, original_prompt, original_negative_prompt = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
details = f"""Prompt: {original_prompt}
Negative prompt: {original_negative_prompt}
Steps: {num_inference_steps}, CFG scale: {guidance_scale}, Seed: {seed}, Size: {resolution}
Default quality tags: {"Enabled" if use_defaults else "Disabled"}"""
if use_defaults:
details += f"""
Default prompt addition: , masterpiece, best quality
Default negative prompt addition: nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name"""
return image, seed, gr.update(value=seed), details
def reset_inputs():
return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=True)
with gr.Blocks(title="UrangDiffusion 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
gr.HTML(
"<h1>UrangDiffusion 1.0 Demo</h1>"
"This demo is intended to showcase what the model is capable of and is not intended to be the main generation platform. Results produced with Diffusers are not the best, and it's highly recommended for you to get the model running inside Stable Diffusion WebUI or ComfyUI."
)
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
resolution_input = gr.Radio(
choices=[
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
"1344x768", "768x1344", "1536x640", "640x1536"
],
label="Resolution",
value="832x1216"
)
guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7)
num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28)
seed_input = gr.Slider(minimum=0, maximum=99999999, step=1, label="Seed", value=0, interactive=True)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
generate_button = gr.Button("Generate")
reset_button = gr.Button("Reset")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Image")
with gr.Accordion("Generation Details", open=False):
generation_info = gr.Textbox(
label="",
max_lines=15,
interactive=False,
elem_id="generation_info",
show_copy_button=True
)
gr.Markdown(
"""
### Recommended prompt formatting:
`1girl/1boy, character name, from what series, everything else in any order, masterpiece, best quality`
**PS:** `masterpiece, best quality` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled
### Recommended settings:
- Steps: 25-30
- CFG: 5-7
"""
)
generate_button.click(
interface_fn,
inputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
],
outputs=[output_image, seed_input, seed_input, generation_info]
)
reset_button.click(
reset_inputs,
inputs=[],
outputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
]
)
demo.queue(max_size=20).launch(share=False) |