File size: 5,272 Bytes
226a7b7
4f0c4ed
b45db27
 
 
 
 
5850fbf
b45db27
 
 
 
 
 
 
 
 
 
 
 
f223a90
c9c788f
f223a90
b45db27
 
 
 
 
f223a90
b45db27
 
 
 
 
 
c9c788f
b45db27
 
 
 
 
 
 
 
 
 
 
 
 
 
f223a90
b45db27
 
c9c788f
f223a90
 
b45db27
 
f223a90
b45db27
 
 
 
a06684e
b45db27
 
 
 
f223a90
b45db27
c9c788f
 
 
 
 
 
4d03169
c9c788f
b45db27
 
 
7e3e351
b45db27
 
 
 
2c40df6
79dca31
 
 
 
87d81cd
79dca31
87d81cd
79dca31
 
 
 
 
b45db27
 
 
 
c9c788f
b45db27
f223a90
b45db27
 
 
 
 
 
c9c788f
b45db27
 
 
4f0c4ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm

# Enable TQDM progress tracking
tqdm.monitor_interval = 0

# Load the diffusion pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
    "kayfahaarukku/UrangDiffusion-1.0", 
    torch_dtype=torch.float16, 
    custom_pipeline="lpw_stable_diffusion_xl",
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

# Function to generate an image
@spaces.GPU  # Adjust the duration as needed
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
    pipe.to('cuda')  # Move the model to GPU when the function is called
    
    if randomize_seed:
        seed = random.randint(0, 99999999)
    if use_defaults:
        prompt = f"{prompt}, masterpiece, best quality"
        negative_prompt = f"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, {negative_prompt}"
    generator = torch.manual_seed(seed)
    
    def callback(step, timestep, latents):
        progress(step / num_inference_steps)
        return
    
    width, height = map(int, resolution.split('x'))
    image = pipe(
        prompt, 
        negative_prompt=negative_prompt,
        width=width,
        height=height, 
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        callback=callback,
        callback_steps=1
    ).images[0]

    torch.cuda.empty_cache()

    return image, seed

# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
    image, seed = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
    return image, seed, gr.update(value=seed)

def reset_inputs():
    return gr.update(value=''), gr.update(value='realistic, 3d,'), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=True)

with gr.Blocks(title="UrangDiffusion 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
    gr.HTML(
        "<h1>UrangDiffusion 1.0 Demo</h1>"
        "This demo is intended to showcase what the model is capable of and is not intended to be the main generation platform. Results produced with Diffusers are not the best, and it's highly recommended for you to get the model running inside Stable Diffusion WebUI or ComfyUI."
        )
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
            negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt", value="realistic, 3d,")
            use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
            resolution_input = gr.Radio(
                choices=[
                    "1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
                    "1344x768", "768x1344", "1536x640", "640x1536"
                ],
                label="Resolution",
                value="832x1216"
            )
            guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7)
            num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28)
            seed_input = gr.Slider(minimum=0, maximum=99999999, step=1, label="Seed", value=0, interactive=True)
            randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
            generate_button = gr.Button("Generate")
            reset_button = gr.Button("Reset")

        with gr.Column():
            output_image = gr.Image(type="pil", label="Generated Image")
            gr.Markdown(
                """
                ### Recommended prompt formatting:
                `1girl/1boy, character name, from what series, everything else in any order, masterpiece, best quality`

                **PS:** `masterpiece, best quality` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled

                ### Recommended settings:
                - Steps: 25-30
                - CFG: 5-7
                """
            )

    generate_button.click(
        interface_fn,
        inputs=[
            prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
        ],
        outputs=[output_image, seed_input]
    )
    
    reset_button.click(
        reset_inputs,
        inputs=[],
        outputs=[
            prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
        ]
    )

demo.queue(max_size=20).launch(share=False)