import os import spaces import torch from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler import gradio as gr import random import tqdm # Enable TQDM progress tracking tqdm.monitor_interval = 0 # Load the diffusion pipeline pipe = StableDiffusionXLPipeline.from_pretrained( "kayfahaarukku/UrangDiffusion-1.0", torch_dtype=torch.float16, custom_pipeline="lpw_stable_diffusion_xl", ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Function to generate an image @spaces.GPU # Adjust the duration as needed def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()): pipe.to('cuda') # Move the model to GPU when the function is called if randomize_seed: seed = random.randint(0, 99999999) if use_defaults: prompt = f"{prompt}, masterpiece, best quality" negative_prompt = f"nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, {negative_prompt}" generator = torch.manual_seed(seed) def callback(step, timestep, latents): progress(step / num_inference_steps) return width, height = map(int, resolution.split('x')) image = pipe( prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, callback=callback, callback_steps=1 ).images[0] torch.cuda.empty_cache() return image, seed, prompt, negative_prompt, guidance_scale, num_inference_steps, resolution # Define Gradio interface def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()): image, seed, prompt, negative_prompt, guidance_scale, num_inference_steps, resolution = generate_image( prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress ) generation_details = ( f"{prompt}\n" f"Negative Prompt: {negative_prompt}\n" f"Steps: {num_inference_steps}\n" f"Sampler: Euler a\n" f"CFG scale: {guidance_scale}\n" f"Seed: {seed}\n" f"Size: {resolution}" ) return image, seed, gr.update(value=seed), gr.update(visible=True), generation_details def reset_inputs(): return ( gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(visible=False), "" ) with gr.Blocks(title="UrangDiffusion 1.0 Demo", theme="NoCrypt/miku@1.2.1") as demo: gr.HTML( "