Spaces:
Sleeping
Sleeping
File size: 4,997 Bytes
69620c8 31c0b50 69620c8 7adf5eb ea8ca16 89f75d5 69620c8 89f75d5 188eb35 c1bd24e 69620c8 c401dbb 89f75d5 69620c8 89f75d5 69620c8 89f75d5 69620c8 f568abc d356965 69620c8 89f75d5 69620c8 89f75d5 69620c8 0cb6010 69620c8 31ad247 69620c8 8b78161 69620c8 89f75d5 69620c8 89f75d5 69620c8 89f75d5 69620c8 89f75d5 69620c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
# Initialize the base model and specific LoRA
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "kaytoo2022/cara-the-cavapoo-flux"
trigger_word = "" # Leave trigger_word blank if not used.
pipe.load_lora_weights(lora_repo, adapter_name='cara')
# ghibsky
lora_repo_2 = "aleksa-codes/flux-ghibsky-illustration"
pipe.load_lora_weights(lora_repo_2, adapter_name='lora_2')
lora_repo_3 = "Datou1111/shou_xin"
pipe.load_lora_weights(lora_repo_3, adapter_name='lora_3')
pipe.set_adapters(["cara", "lora_2", "lora_3"], adapter_weights=[0.85, 0.0, 0.0])
pipe.to("cuda")
MAX_SEED = 2**32-1
@spaces.GPU()
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, lora_scale_2, lora_scale_3, progress=gr.Progress(track_tqdm=True)):
# Set random seed for reproducibility
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
pipe.set_adapters(["cara", "lora_2", "lora_3"], adapter_weights=[lora_scale, lora_scale_2, lora_scale_3])
# Update progress bar (0% saat mulai)
progress(0, "Starting image generation...")
# Generate image with progress updates
for i in range(1, steps + 1):
# Simulate the processing step (in a real scenario, you would integrate this with your image generation process)
if i % (steps // 10) == 0: # Update every 10% of the steps
progress(i / steps * 100, f"Processing step {i} of {steps}...")
# Generate image using the pipeline
image = pipe(
prompt=f"{prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
# joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Final update (100%)
progress(100, "Completed!")
yield image, seed
# Example cached image and settings
example_image_path = "cara-shark.jpg" # Replace with the actual path to the example image
example_prompt = """A portrait picture of Cara the Cavapoo in an astronaut outfit. Planets are visible in the background"""
example_cfg_scale = 3.2
example_steps = 32
example_width = 1152
example_height = 896
example_seed = 3981632454
example_lora_scale = 0.85
example_lora_scale_2 = 0.0
example_lora_scale_3 = 0.0
def load_example():
# Load example image from file
example_image = Image.open(example_image_path)
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_lora_scale_2, example_lora_scale_3, example_image
with gr.Blocks() as app:
gr.Markdown("# Flux Lora Image Generator")
with gr.Row():
with gr.Column(scale=3):
prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
generate_button = gr.Button("Generate")
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
lora_scale_2 = gr.Slider(label="LoRA Scale (GhibSky)", minimum=0, maximum=1, step=0.01, value=example_lora_scale_2)
lora_scale_3 = gr.Slider(label="LoRA Scale (Sketch)", minimum=0, maximum=1, step=0.01, value=example_lora_scale_3)
with gr.Column(scale=1):
result = gr.Image(label="Generated Image")
gr.Markdown("Generate images using Flux and a text prompt.\nUse `b3lla dog` in the prompt to trigger generating an image of Bella the dog.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]")
# Automatically load example data and image when the interface is launched
app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, lora_scale_2, lora_scale_3, result])
generate_button.click(
run_lora,
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, lora_scale_2, lora_scale_3],
outputs=[result, seed]
)
app.queue()
app.launch() |