File size: 4,997 Bytes
69620c8
 
 
 
 
 
 
31c0b50
 
 
 
69620c8
 
 
 
7adf5eb
ea8ca16
89f75d5
69620c8
89f75d5
 
 
 
 
 
 
 
188eb35
c1bd24e
 
69620c8
 
c401dbb
89f75d5
69620c8
 
 
 
 
89f75d5
 
69620c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89f75d5
69620c8
 
 
 
 
 
 
 
f568abc
d356965
69620c8
 
 
 
 
 
89f75d5
 
69620c8
 
 
 
89f75d5
69620c8
 
0cb6010
69620c8
 
 
31ad247
69620c8
 
 
 
8b78161
69620c8
 
89f75d5
 
69620c8
 
89f75d5
69620c8
 
89f75d5
69620c8
 
 
89f75d5
69620c8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True

# Initialize the base model and specific LoRA
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)

lora_repo = "kaytoo2022/cara-the-cavapoo-flux"
trigger_word = ""  # Leave trigger_word blank if not used.
pipe.load_lora_weights(lora_repo, adapter_name='cara')

# ghibsky
lora_repo_2 = "aleksa-codes/flux-ghibsky-illustration"
pipe.load_lora_weights(lora_repo_2, adapter_name='lora_2')

lora_repo_3 = "Datou1111/shou_xin"
pipe.load_lora_weights(lora_repo_3, adapter_name='lora_3')

pipe.set_adapters(["cara", "lora_2", "lora_3"], adapter_weights=[0.85, 0.0, 0.0])

pipe.to("cuda")

MAX_SEED = 2**32-1

@spaces.GPU()
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, lora_scale_2, lora_scale_3, progress=gr.Progress(track_tqdm=True)):
    # Set random seed for reproducibility
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device="cuda").manual_seed(seed)

    pipe.set_adapters(["cara", "lora_2", "lora_3"], adapter_weights=[lora_scale, lora_scale_2, lora_scale_3])

    # Update progress bar (0% saat mulai)
    progress(0, "Starting image generation...")

    # Generate image with progress updates
    for i in range(1, steps + 1):
        # Simulate the processing step (in a real scenario, you would integrate this with your image generation process)
        if i % (steps // 10) == 0:  # Update every 10% of the steps
            progress(i / steps * 100, f"Processing step {i} of {steps}...")

    # Generate image using the pipeline
    image = pipe(
        prompt=f"{prompt} {trigger_word}",
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        # joint_attention_kwargs={"scale": lora_scale},
    ).images[0]

    # Final update (100%)
    progress(100, "Completed!")

    yield image, seed

# Example cached image and settings
example_image_path = "cara-shark.jpg"  # Replace with the actual path to the example image
example_prompt = """A portrait picture of Cara the Cavapoo in an astronaut outfit. Planets are visible in the background"""
example_cfg_scale = 3.2
example_steps = 32
example_width = 1152
example_height = 896
example_seed = 3981632454
example_lora_scale = 0.85
example_lora_scale_2 = 0.0
example_lora_scale_3 = 0.0

def load_example():
    # Load example image from file
    example_image = Image.open(example_image_path)
    return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_lora_scale_2, example_lora_scale_3, example_image

with gr.Blocks() as app:
    gr.Markdown("# Flux Lora Image Generator")
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
            generate_button = gr.Button("Generate")
            cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
            steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
            width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
            height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
            randomize_seed = gr.Checkbox(True, label="Randomize seed")
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
            lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
            lora_scale_2 = gr.Slider(label="LoRA Scale (GhibSky)", minimum=0, maximum=1, step=0.01, value=example_lora_scale_2)
            lora_scale_3 = gr.Slider(label="LoRA Scale (Sketch)", minimum=0, maximum=1, step=0.01, value=example_lora_scale_3)
        with gr.Column(scale=1):
            result = gr.Image(label="Generated Image")
            gr.Markdown("Generate images using Flux and a text prompt.\nUse `b3lla dog` in the prompt to trigger generating an image of Bella the dog.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]")

    # Automatically load example data and image when the interface is launched
    app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, lora_scale_2, lora_scale_3, result])
    
    generate_button.click(
        run_lora,
        inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, lora_scale_2, lora_scale_3],
        outputs=[result, seed]
    )

app.queue()
app.launch()