|
import streamlit as st |
|
import pandas as pd |
|
import gensim |
|
import joblib |
|
import numpy as np |
|
import tensorflow as tf |
|
from tensorflow.keras.models import Sequential, Model |
|
from tensorflow.keras.layers import Embedding, TextVectorization, GlobalAveragePooling1D, Input, LSTM, GRU, Dropout, Dense |
|
|
|
from scraper import scrape |
|
from func import TextProcess, Label, TextProcess2 |
|
|
|
lda_model_inf = gensim.models.LdaModel.load('lda.model') |
|
|
|
model = tf.keras.models.load_model('model_imp') |
|
|
|
|
|
|
|
|
|
with open('dictionary.pkl', 'rb') as file_4: |
|
dictionary_inf = joblib.load(file_4) |
|
|
|
def run(): |
|
|
|
st.title('Negative Review clustering insights') |
|
|
|
|
|
|
|
with st.form(key='form_parameters'): |
|
text_input = st.text_input('Reviews', 'Barangnya tidak sesuai gambar') |
|
submitted_text = st.form_submit_button('Show topic') |
|
|
|
data_inf = { |
|
'text': text_input |
|
} |
|
|
|
|
|
data_inf = pd.DataFrame([data_inf]) |
|
|
|
if submitted_text: |
|
data_inf['text_processed'] = data_inf['text'].apply(lambda x: TextProcess(x)) |
|
Message_body_inf = data_inf['text_processed'] |
|
|
|
data_inf['text_processed_2'] = data_inf['text'].apply(lambda x: TextProcess2(x)) |
|
Message_body_inf_2 = data_inf['text_processed_2'] |
|
|
|
y_pred_inf = model.predict(Message_body_inf_2) |
|
y_pred_inf = np.where(y_pred_inf >= 0.5, 1, 0) |
|
|
|
if y_pred_inf == 0: |
|
st.write('Negative sentiment') |
|
for i in range(len(Message_body_inf)): |
|
bow_vector = dictionary_inf.doc2bow(Message_body_inf[i]) |
|
for index, score in sorted(lda_model_inf[bow_vector], key=lambda tup: -1*tup[1]): |
|
|
|
st.write(f"Complaint: {Label(index)}") |
|
|
|
break |
|
st.write('------------------------------------') |
|
else: |
|
st.write('Positive sentiment') |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
run() |