kazalbrur commited on
Commit
1e08797
·
verified ·
1 Parent(s): 6cfb1b3
Files changed (1) hide show
  1. app.py +31 -34
app.py CHANGED
@@ -2,56 +2,34 @@ import gradio as gr
2
  import spaces
3
  from transformers import pipeline
4
  from typing import List, Dict, Any
 
5
 
6
  def merge_tokens(tokens: List[Dict[str, any]]) -> List[Dict[str, any]]:
7
- """
8
- Merges tokens that belong to the same entity into a single token.
9
-
10
- Args:
11
- tokens (List[Dict[str, any]]): A list of token dictionaries, each containing information about
12
- the entity, word, start, end, and score.
13
-
14
- Returns:
15
- List[Dict[str, any]]: A list of merged token dictionaries, where tokens that are part of the
16
- same entity are combined into a single token with updated word, end,
17
- and score values.
18
- """
19
  merged_tokens = []
20
  for token in tokens:
21
  if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
22
- # If the current token continues the entity of the last one, merge them
23
  last_token = merged_tokens[-1]
24
  last_token['word'] += token['word'].replace('##', '')
25
  last_token['end'] = token['end']
26
  last_token['score'] = (last_token['score'] + token['score']) / 2
27
  else:
28
- # Otherwise, add the token to the list
29
  merged_tokens.append(token)
30
-
31
  return merged_tokens
32
 
 
 
 
33
  # Initialize Model
34
- get_completion = pipeline("ner", model="kazalbrur/bangla-english-med-bert-ner")
35
 
36
  @spaces.GPU(duration=120)
37
  def ner(input: str) -> Dict[str, Any]:
38
- """
39
- Performs Named Entity Recognition (NER) on the given input text and merges tokens that belong
40
- to the same entity into a single entity.
41
-
42
- Args:
43
- input (str): The input text to analyze for named entities.
44
-
45
- Returns:
46
- Dict[str, Any]: A dictionary containing the original text and a list of identified entities
47
- with merged tokens.
48
- - "text": The original input text.
49
- - "entities": A list of dictionaries, where each dictionary contains information
50
- about a recognized entity, including the word, entity type, score, and positions.
51
- """
52
- output = get_completion(input)
53
- merged_tokens = merge_tokens(output)
54
- return {"text": input, "entities": merged_tokens}
55
 
56
  ####### GRADIO APP #######
57
  title = """<h1 id="title"> Bangla Banglish and English Bio-Medical Entity Recognition </h1>"""
@@ -60,4 +38,23 @@ description = """
60
  - The model used for Recognizing entities [BERT-BASE-NER](https://huggingface.co/kazalbrur/bangla-english-med-bert-ner).
61
  """
62
 
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import spaces
3
  from transformers import pipeline
4
  from typing import List, Dict, Any
5
+ import torch
6
 
7
  def merge_tokens(tokens: List[Dict[str, any]]) -> List[Dict[str, any]]:
 
 
 
 
 
 
 
 
 
 
 
 
8
  merged_tokens = []
9
  for token in tokens:
10
  if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
 
11
  last_token = merged_tokens[-1]
12
  last_token['word'] += token['word'].replace('##', '')
13
  last_token['end'] = token['end']
14
  last_token['score'] = (last_token['score'] + token['score']) / 2
15
  else:
 
16
  merged_tokens.append(token)
 
17
  return merged_tokens
18
 
19
+ # Determine device
20
+ device = 0 if torch.cuda.is_available() else -1
21
+
22
  # Initialize Model
23
+ get_completion = pipeline("ner", model="kazalbrur/bangla-english-med-bert-ner", device=device)
24
 
25
  @spaces.GPU(duration=120)
26
  def ner(input: str) -> Dict[str, Any]:
27
+ try:
28
+ output = get_completion(input)
29
+ merged_tokens = merge_tokens(output)
30
+ return {"text": input, "entities": merged_tokens}
31
+ except Exception as e:
32
+ return {"text": input, "entities": [], "error": str(e)}
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ####### GRADIO APP #######
35
  title = """<h1 id="title"> Bangla Banglish and English Bio-Medical Entity Recognition </h1>"""
 
38
  - The model used for Recognizing entities [BERT-BASE-NER](https://huggingface.co/kazalbrur/bangla-english-med-bert-ner).
39
  """
40
 
41
+ css = '''
42
+ h1#title {
43
+ text-align: center;
44
+ }
45
+ '''
46
+
47
+ theme = gr.themes.Soft()
48
+ demo = gr.Blocks(css=css, theme=theme)
49
+
50
+ with demo:
51
+ gr.Markdown(title)
52
+ gr.Markdown(description)
53
+ gr.Interface(
54
+ fn=ner,
55
+ inputs=[gr.Textbox(label="Enter Your Text to Find Entities", lines=10)],
56
+ outputs=[gr.HighlightedText(label="Text with entities")],
57
+ allow_flagging="never"
58
+ )
59
+
60
+ demo.launch()