Spaces:
Sleeping
Sleeping
File size: 2,245 Bytes
a6d42f7 1ab345c a6d42f7 1ab345c a6d42f7 6ac85e1 e714dfd 6ac85e1 e714dfd 1ab345c e714dfd 1ab345c e714dfd 6ac85e1 e714dfd 6ac85e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
import spaces
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
from typing import List, Dict, Any
import torch
# Define the model and tokenizer
model_name = "kazalbrur/BanglaLegalNER" # Ensure this model is suitable or update accordingly
tokenizer_name = "csebuetnlp/banglat5_banglaparaphrase"
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=False)
model = AutoModelForTokenClassification.from_pretrained(model_name)
def merge_tokens(tokens: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
merged_tokens = []
for token in tokens:
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
last_token = merged_tokens[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
last_token['score'] = (last_token['score'] + token['score']) / 2
else:
merged_tokens.append(token)
return merged_tokens
# Determine device
device = 0 if torch.cuda.is_available() else -1
# Initialize Pipeline with the new model and tokenizer
get_completion = pipeline("ner", model=model, tokenizer=tokenizer, device=device)
@spaces.GPU(duration=120)
def ner(input: str) -> Dict[str, Any]:
try:
output = get_completion(input)
merged_tokens = merge_tokens(output)
return {"text": input, "entities": merged_tokens}
except Exception as e:
return {"text": input, "entities": [], "error": str(e)}
####### GRADIO APP #######
title = """<h1 id="title"> Bangla Legal Entity Recognition </h1>"""
description = """
- The model used for Recognizing entities [Bangla Legal NER](https://huggingface.co/kazalbrur/BanglaLegalNER).
"""
css = '''
h1#title {
text-align: center;
}
'''
theme = gr.themes.Soft()
demo = gr.Blocks(css=css, theme=theme)
with demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Interface(
fn=ner,
inputs=[gr.Textbox(label="Enter Your Text to Find the Legal Entities", lines=20)],
outputs=[gr.HighlightedText(label="Text with entities")],
allow_flagging="never"
)
demo.launch()
|