File size: 9,702 Bytes
6af7294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907fc9a
6af7294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907fc9a
6af7294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907fc9a
6af7294
 
 
 
 
 
 
907fc9a
6af7294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907fc9a
 
6af7294
 
 
 
 
 
 
907fc9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6af7294
 
 
907fc9a
6af7294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
907fc9a
 
 
 
 
 
 
 
 
 
 
 
6af7294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
from diffusers import DiffusionPipeline,StableDiffusionInpaintPipeline
import torch
from .utils.prompt2prompt import generate
from .utils.device import get_device
from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list
from .download import get_share_js, CSS, get_community_loading_icon

INPAINT_MODEL_LIST = {
    "Stable Diffusion 2" : "stabilityai/stable-diffusion-2-inpainting",
    "Stable Diffusion 1" : "runwayml/stable-diffusion-inpainting",
}

class StableDiffusionInpaintGenerator:
    def __init__(self):
        self.pipe = None

    def load_model(self, model_path, scheduler):
        model_path = INPAINT_MODEL_LIST[model_path]
        if self.pipe is None:
            self.pipe = StableDiffusionInpaintPipeline.from_pretrained(
                model_path, torch_dtype=torch.float32
            )
        device = get_device()
        self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
        self.pipe.to(device)
        self.pipe.enable_attention_slicing()
        return self.pipe

    def generate_image(
        self,
        pil_image: str,
        model_path: str,
        prompt: str,
        negative_prompt: str,
        scheduler: str,
        guidance_scale: int,
        num_inference_step: int,
        height: int,
        width: int,
        seed_generator=0,
    ):
        
        image = pil_image["image"].convert("RGB").resize((width, height))
        mask_image = pil_image["mask"].convert("RGB").resize((width, height))

        pipe = self.load_model(model_path,scheduler)

        if seed_generator == 0:
            random_seed = torch.randint(0, 1000000, (1,))
            generator = torch.manual_seed(random_seed)
        else:
            generator = torch.manual_seed(seed_generator)

        output = pipe(
            prompt=prompt,
            image=image,
            mask_image=mask_image,
            negative_prompt=negative_prompt,
            num_images_per_prompt=1,
            num_inference_steps=num_inference_step,
            guidance_scale=guidance_scale,
            generator=generator,
        ).images

        return output
    

    def app():
        demo = gr.Blocks(css=CSS)
        with demo:
            with gr.Row():
                with gr.Column():
                    stable_diffusion_inpaint_image_file = gr.Image(
                        source="upload",
                        tool="sketch",
                        elem_id="image-upload-inpainting",
                        type="pil",
                        label="Upload",

                    ).style(height=260)

                    stable_diffusion_inpaint_prompt = gr.Textbox(
                        lines=1,
                        placeholder="Prompt, keywords that explains how you want to modify the image.",
                        show_label=False,
                        elem_id="prompt-text-input-inpainting",
                        value=''
                    )

                    stable_diffusion_inpaint_negative_prompt = gr.Textbox(
                        lines=1,
                        placeholder="Negative Prompt, keywords that describe what you don't want in your image",
                        show_label=False,
                        elem_id = "negative-prompt-text-input-inpainting",
                        value=''
                    )
                    # add button for generating a prompt from the prompt
                    stable_diffusion_inpaint_generate = gr.Button(
                        label="Generate Prompt",
                        type="primary",
                        align="center",
                        value = "Generate Prompt"
                    )

                    # show a text box with the generated prompt
                    stable_diffusion_inpaint_generated_prompt = gr.Textbox(
                        lines=1,
                        placeholder="Generated Prompt",
                        show_label=False,
                        info="Auto generated prompts for inspiration.",

                    )

                    stable_diffusion_inpaint_model_id = gr.Dropdown(
                        choices=list(INPAINT_MODEL_LIST.keys()),
                        value=list(INPAINT_MODEL_LIST.keys())[0],
                        label="Inpaint Model Selection",
                        elem_id="model-dropdown-inpainting",
                        info="Select the model you want to use for inpainting."
                    )

                    stable_diffusion_inpaint_scheduler = gr.Dropdown(
                            choices=SCHEDULER_LIST,
                            value=SCHEDULER_LIST[0],
                            label="Scheduler",
                            elem_id="scheduler-dropdown-inpainting",
                            info="Scheduler list for models. Different schdulers result in different outputs."
                    )


                    stable_diffusion_inpaint_guidance_scale = gr.Slider(
                        minimum=0.1,
                        maximum=15,
                        step=0.1,
                        value=7.5,
                        label="Guidance Scale",
                        elem_id = "guidance-scale-slider-inpainting",
                        info = "Guidance scale determines how much the prompt will affect the image. Higher the value, more the effect."

                    )

                    stable_diffusion_inpaint_num_inference_step = gr.Slider(
                        minimum=1,
                        maximum=100,
                        step=1,
                        value=50,
                        label="Num Inference Step",
                        elem_id = "num-inference-step-slider-inpainting",
                        info = "Number of inference step determines the quality of the image. Higher the number, better the quality."

                    )
  
                    stable_diffusion_inpaint_size = gr.Slider(
                        minimum=128,
                        maximum=1280,
                        step=32,
                        value=512,
                        label="Image Size",
                        elem_id="image-size-slider-inpainting",
                        info = "Image size determines the height and width of the generated image. Higher the value, better the quality however slower the computation."

                    )

                    stable_diffusion_inpaint_seed_generator = gr.Slider(
                        label="Seed(0 for random)",
                        minimum=0,
                        maximum=1000000,
                        value=0,
                        elem_id="seed-slider-inpainting",
                        info="Set the seed to a specific value to reproduce the results."
                    )

                    stable_diffusion_inpaint_predict = gr.Button(
                        value="Generate image"
                    )
                
                with gr.Column():
                    output_image = gr.Gallery(
                        label="Generated images",
                        show_label=False,
                        elem_id="gallery-inpainting",
                    ).style(grid=(1, 2))

                    with gr.Group(elem_id="container-advanced-btns"):
                        with gr.Group(elem_id="share-btn-container"):
                            community_icon_html, loading_icon_html = get_community_loading_icon("inpainting")
                            community_icon = gr.HTML(community_icon_html)
                            loading_icon = gr.HTML(loading_icon_html)
                            share_button = gr.Button("Save artwork", elem_id="share-btn-inpainting")

                    gr.HTML(
                        """
                        <div id="model-description-img2img">
                            <h3>Inpainting Models</h3>
                            <p>Inpainting models will take a masked image and modify the masked image with the given prompt.</p>
                            <p>Prompt should describe how you want to modify the image. For example, if you want to modify the image to have a blue sky, you can use the prompt "sky is blue".</p>
                            <p>Negative prompt should describe what you don't want in your image. For example, if you don't want the image to have a red sky, you can use the negative prompt "sky is red".</p>
                            <hr>
                            <p>Stable Diffusion 1 & 2: Default model for many tasks. </p>
                            </div>
                        """
                    )
            stable_diffusion_inpaint_predict.click(
                fn=StableDiffusionInpaintGenerator().generate_image,
                inputs=[
                    stable_diffusion_inpaint_image_file,
                    stable_diffusion_inpaint_model_id,
                    stable_diffusion_inpaint_prompt,
                    stable_diffusion_inpaint_negative_prompt,
                    stable_diffusion_inpaint_scheduler,
                    stable_diffusion_inpaint_guidance_scale,
                    stable_diffusion_inpaint_num_inference_step,
                    stable_diffusion_inpaint_size,
                    stable_diffusion_inpaint_size,
                    stable_diffusion_inpaint_seed_generator,
                ],
                outputs=[output_image],
            )

            stable_diffusion_inpaint_generate.click(
                fn=generate,
                inputs=[stable_diffusion_inpaint_prompt],
                outputs=[stable_diffusion_inpaint_generated_prompt],
            )

            


        return demo