File size: 9,702 Bytes
6af7294 907fc9a 6af7294 907fc9a 6af7294 907fc9a 6af7294 907fc9a 6af7294 907fc9a 6af7294 907fc9a 6af7294 907fc9a 6af7294 907fc9a 6af7294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import gradio as gr
from diffusers import DiffusionPipeline,StableDiffusionInpaintPipeline
import torch
from .utils.prompt2prompt import generate
from .utils.device import get_device
from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list
from .download import get_share_js, CSS, get_community_loading_icon
INPAINT_MODEL_LIST = {
"Stable Diffusion 2" : "stabilityai/stable-diffusion-2-inpainting",
"Stable Diffusion 1" : "runwayml/stable-diffusion-inpainting",
}
class StableDiffusionInpaintGenerator:
def __init__(self):
self.pipe = None
def load_model(self, model_path, scheduler):
model_path = INPAINT_MODEL_LIST[model_path]
if self.pipe is None:
self.pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_path, torch_dtype=torch.float32
)
device = get_device()
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
self.pipe.to(device)
self.pipe.enable_attention_slicing()
return self.pipe
def generate_image(
self,
pil_image: str,
model_path: str,
prompt: str,
negative_prompt: str,
scheduler: str,
guidance_scale: int,
num_inference_step: int,
height: int,
width: int,
seed_generator=0,
):
image = pil_image["image"].convert("RGB").resize((width, height))
mask_image = pil_image["mask"].convert("RGB").resize((width, height))
pipe = self.load_model(model_path,scheduler)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
output = pipe(
prompt=prompt,
image=image,
mask_image=mask_image,
negative_prompt=negative_prompt,
num_images_per_prompt=1,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
generator=generator,
).images
return output
def app():
demo = gr.Blocks(css=CSS)
with demo:
with gr.Row():
with gr.Column():
stable_diffusion_inpaint_image_file = gr.Image(
source="upload",
tool="sketch",
elem_id="image-upload-inpainting",
type="pil",
label="Upload",
).style(height=260)
stable_diffusion_inpaint_prompt = gr.Textbox(
lines=1,
placeholder="Prompt, keywords that explains how you want to modify the image.",
show_label=False,
elem_id="prompt-text-input-inpainting",
value=''
)
stable_diffusion_inpaint_negative_prompt = gr.Textbox(
lines=1,
placeholder="Negative Prompt, keywords that describe what you don't want in your image",
show_label=False,
elem_id = "negative-prompt-text-input-inpainting",
value=''
)
# add button for generating a prompt from the prompt
stable_diffusion_inpaint_generate = gr.Button(
label="Generate Prompt",
type="primary",
align="center",
value = "Generate Prompt"
)
# show a text box with the generated prompt
stable_diffusion_inpaint_generated_prompt = gr.Textbox(
lines=1,
placeholder="Generated Prompt",
show_label=False,
info="Auto generated prompts for inspiration.",
)
stable_diffusion_inpaint_model_id = gr.Dropdown(
choices=list(INPAINT_MODEL_LIST.keys()),
value=list(INPAINT_MODEL_LIST.keys())[0],
label="Inpaint Model Selection",
elem_id="model-dropdown-inpainting",
info="Select the model you want to use for inpainting."
)
stable_diffusion_inpaint_scheduler = gr.Dropdown(
choices=SCHEDULER_LIST,
value=SCHEDULER_LIST[0],
label="Scheduler",
elem_id="scheduler-dropdown-inpainting",
info="Scheduler list for models. Different schdulers result in different outputs."
)
stable_diffusion_inpaint_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
elem_id = "guidance-scale-slider-inpainting",
info = "Guidance scale determines how much the prompt will affect the image. Higher the value, more the effect."
)
stable_diffusion_inpaint_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
elem_id = "num-inference-step-slider-inpainting",
info = "Number of inference step determines the quality of the image. Higher the number, better the quality."
)
stable_diffusion_inpaint_size = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Size",
elem_id="image-size-slider-inpainting",
info = "Image size determines the height and width of the generated image. Higher the value, better the quality however slower the computation."
)
stable_diffusion_inpaint_seed_generator = gr.Slider(
label="Seed(0 for random)",
minimum=0,
maximum=1000000,
value=0,
elem_id="seed-slider-inpainting",
info="Set the seed to a specific value to reproduce the results."
)
stable_diffusion_inpaint_predict = gr.Button(
value="Generate image"
)
with gr.Column():
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery-inpainting",
).style(grid=(1, 2))
with gr.Group(elem_id="container-advanced-btns"):
with gr.Group(elem_id="share-btn-container"):
community_icon_html, loading_icon_html = get_community_loading_icon("inpainting")
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Save artwork", elem_id="share-btn-inpainting")
gr.HTML(
"""
<div id="model-description-img2img">
<h3>Inpainting Models</h3>
<p>Inpainting models will take a masked image and modify the masked image with the given prompt.</p>
<p>Prompt should describe how you want to modify the image. For example, if you want to modify the image to have a blue sky, you can use the prompt "sky is blue".</p>
<p>Negative prompt should describe what you don't want in your image. For example, if you don't want the image to have a red sky, you can use the negative prompt "sky is red".</p>
<hr>
<p>Stable Diffusion 1 & 2: Default model for many tasks. </p>
</div>
"""
)
stable_diffusion_inpaint_predict.click(
fn=StableDiffusionInpaintGenerator().generate_image,
inputs=[
stable_diffusion_inpaint_image_file,
stable_diffusion_inpaint_model_id,
stable_diffusion_inpaint_prompt,
stable_diffusion_inpaint_negative_prompt,
stable_diffusion_inpaint_scheduler,
stable_diffusion_inpaint_guidance_scale,
stable_diffusion_inpaint_num_inference_step,
stable_diffusion_inpaint_size,
stable_diffusion_inpaint_size,
stable_diffusion_inpaint_seed_generator,
],
outputs=[output_image],
)
stable_diffusion_inpaint_generate.click(
fn=generate,
inputs=[stable_diffusion_inpaint_prompt],
outputs=[stable_diffusion_inpaint_generated_prompt],
)
return demo
|