|
import gradio as gr |
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list |
|
from .utils.prompt2prompt import generate |
|
from .utils.device import get_device |
|
from .download import get_share_js, community_icon_html, loading_icon_html, CSS |
|
|
|
|
|
|
|
TEXT2IMG_MODEL_LIST = { |
|
"OpenJourney v4" : "prompthero/openjourney-v4", |
|
"StableDiffusion 1.5" : "runwayml/stable-diffusion-v1-5", |
|
"StableDiffusion 2.1" : "stabilityai/stable-diffusion-2-1", |
|
"DreamLike 1.0" : "dreamlike-art/dreamlike-diffusion-1.0", |
|
"DreamLike 2.0" : "dreamlike-art/dreamlike-photoreal-2.0", |
|
"DreamShaper" : "Lykon/DreamShaper", |
|
"NeverEnding-Dream" : "Lykon/NeverEnding-Dream" |
|
} |
|
|
|
class StableDiffusionText2ImageGenerator: |
|
def __init__(self): |
|
self.pipe = None |
|
|
|
def load_model( |
|
self, |
|
model_path, |
|
scheduler |
|
): |
|
model_path = TEXT2IMG_MODEL_LIST[model_path] |
|
if self.pipe is None: |
|
self.pipe = StableDiffusionPipeline.from_pretrained( |
|
model_path, safety_checker=None, torch_dtype=torch.float32 |
|
) |
|
|
|
device = get_device() |
|
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) |
|
self.pipe.to(device) |
|
self.pipe.enable_attention_slicing() |
|
|
|
return self.pipe |
|
|
|
def generate_image( |
|
self, |
|
model_path: str, |
|
prompt: str, |
|
negative_prompt: str, |
|
scheduler: str, |
|
guidance_scale: int, |
|
num_inference_step: int, |
|
height: int, |
|
width: int, |
|
seed_generator=0, |
|
): |
|
print("model_path", model_path) |
|
print("prompt", prompt) |
|
print("negative_prompt", negative_prompt) |
|
print("num_images_per_prompt", 1) |
|
print("scheduler", scheduler) |
|
print("guidance_scale", guidance_scale) |
|
print("num_inference_step", num_inference_step) |
|
print("height", height) |
|
print("width", width) |
|
print("seed_generator", seed_generator) |
|
|
|
pipe = self.load_model( |
|
model_path=model_path, |
|
scheduler=scheduler, |
|
) |
|
if seed_generator == 0: |
|
random_seed = torch.randint(0, 1000000, (1,)) |
|
generator = torch.manual_seed(random_seed) |
|
else: |
|
generator = torch.manual_seed(seed_generator) |
|
|
|
images = pipe( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=1, |
|
num_inference_steps=num_inference_step, |
|
guidance_scale=guidance_scale, |
|
generator=generator, |
|
).images |
|
|
|
return images |
|
|
|
|
|
def app(username : str = "admin"): |
|
demo = gr.Blocks(css = CSS) |
|
with demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
text2image_prompt = gr.Textbox( |
|
lines=1, |
|
show_label=False, |
|
elem_id="prompt-text-input", |
|
value='', |
|
placeholder="Prompt, keywords that describe your image" |
|
) |
|
|
|
text2image_negative_prompt = gr.Textbox( |
|
lines=1, |
|
show_label=False, |
|
elem_id = "negative-prompt-text-input", |
|
value='', |
|
placeholder="Negative Prompt, keywords that describe what you don't want in your image", |
|
) |
|
|
|
|
|
text2image_prompt_generate_button = gr.Button( |
|
label="Generate Prompt", |
|
type="primary", |
|
align="center", |
|
value = "Generate Prompt" |
|
) |
|
|
|
|
|
text2image_prompt_generated_prompt = gr.Textbox( |
|
lines=1, |
|
placeholder="Generated Prompt", |
|
show_label=False, |
|
info="Auto generated prompts for inspiration.", |
|
) |
|
|
|
text2image_model_path = gr.Dropdown( |
|
choices=list(TEXT2IMG_MODEL_LIST.keys()), |
|
value=list(TEXT2IMG_MODEL_LIST.keys())[0], |
|
label="Text2Image Model Selection", |
|
elem_id="model-dropdown", |
|
info="Select the model you want to use for text2image generation." |
|
) |
|
|
|
text2image_scheduler = gr.Dropdown( |
|
choices=SCHEDULER_LIST, |
|
value=SCHEDULER_LIST[0], |
|
label="Scheduler", |
|
elem_id="scheduler-dropdown", |
|
info="Scheduler list for models. Different schdulers result in different outputs." |
|
) |
|
|
|
|
|
|
|
text2image_size = gr.Slider( |
|
minimum=128, |
|
maximum=1280, |
|
step=32, |
|
value=768, |
|
label="Image Size", |
|
elem_id="image-size-slider", |
|
info = "Image size determines the height and width of the generated image. Higher the value, better the quality however slower the computation." |
|
) |
|
text2image_seed_generator = gr.Slider( |
|
label="Seed(0 for random)", |
|
minimum=0, |
|
maximum=1000000, |
|
value=0, |
|
elem_id="seed-slider", |
|
info="Set the seed to a specific value to reproduce the results." |
|
) |
|
|
|
|
|
text2image_guidance_scale = gr.Slider( |
|
minimum=0.1, |
|
maximum=15, |
|
step=0.1, |
|
value=7.5, |
|
label="Guidance Scale", |
|
elem_id = "guidance-scale-slider", |
|
info = "Guidance scale determines how much the prompt will affect the image. Higher the value, more the effect." |
|
) |
|
|
|
text2image_num_inference_step = gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
label="Num Inference Step", |
|
elem_id = "num-inference-step-slider", |
|
info = "Number of inference step determines the quality of the image. Higher the number, better the quality." |
|
) |
|
text2image_predict = gr.Button(value="Generate image") |
|
|
|
with gr.Column(): |
|
output_image = gr.Gallery( |
|
label="Generated images", |
|
show_label=False, |
|
elem_id="gallery", |
|
).style(grid=(1, 2), height='auto') |
|
|
|
with gr.Group(elem_id="container-advanced-btns"): |
|
with gr.Group(elem_id="share-btn-container"): |
|
community_icon = gr.HTML(community_icon_html) |
|
loading_icon = gr.HTML(loading_icon_html) |
|
share_button = gr.Button("Save artwork", elem_id="share-btn") |
|
|
|
gr.HTML( |
|
""" |
|
<div id="model-description-text2img"> |
|
<h3>Text2Image Models</h3> |
|
<p>Text to image models will generate an image guided by the prompt that is provided</p> |
|
<p>A prompt should be specified with keywords that describe the image you want to generate.</p> |
|
<p>Negative prompt can be used to specify keywords that you don't want in your image such as "blood" or "violence".</p> |
|
<p>Example prompt: "A painting of a cat sitting on a chair, fantasy themed, starry background"</p> |
|
<hr> |
|
<p>Stable Diffusion 1.5 & 2.1: Default model for many tasks. </p> |
|
<p>OpenJourney v4: Generates fantasy themed images similar to the Midjourney model. </p> |
|
<p>Dreamlike Photoreal 1.0 & 2.0 is SD 1.5 that generates realistic images. </p> |
|
</div> |
|
""" |
|
) |
|
text2image_predict.click( |
|
fn=StableDiffusionText2ImageGenerator().generate_image, |
|
inputs=[ |
|
text2image_model_path, |
|
text2image_prompt, |
|
text2image_negative_prompt, |
|
text2image_scheduler, |
|
text2image_guidance_scale, |
|
text2image_num_inference_step, |
|
text2image_size, |
|
text2image_size, |
|
text2image_seed_generator, |
|
], |
|
outputs=output_image, |
|
) |
|
|
|
text2image_prompt_generate_button.click( |
|
fn=generate, |
|
inputs=[text2image_prompt], |
|
outputs=[text2image_prompt_generated_prompt], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return demo |