Spaces:
Sleeping
Sleeping
import
Browse files- next_token.py +68 -0
- requirements.txt +2 -0
next_token.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import transformers
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
from transformers import MarianMTModel, MarianTokenizer
|
12 |
+
model_name = 'Helsinki-NLP/opus-mt-ROMANCE-en'
|
13 |
+
|
14 |
+
@st.cache_resource
|
15 |
+
def get_tokenizer(model_name):
|
16 |
+
return MarianTokenizer.from_pretrained(model_name)
|
17 |
+
|
18 |
+
@st.cache_resource
|
19 |
+
def get_model(model_name):
|
20 |
+
return MarianMTModel.from_pretrained(model_name).to(device)
|
21 |
+
|
22 |
+
tokenizer = get_tokenizer(model_name)
|
23 |
+
model = get_model(model_name)
|
24 |
+
|
25 |
+
print(f"The model has {model.num_parameters():,d} parameters.")
|
26 |
+
|
27 |
+
input_text = st.text_input("Enter text to translate", "Hola, mi nombre es Juan")
|
28 |
+
input_text = input_text.strip()
|
29 |
+
if not input_text:
|
30 |
+
st.stop()
|
31 |
+
|
32 |
+
output_so_far = st.text_input("Enter text translated so far", "Hello, my")
|
33 |
+
|
34 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
35 |
+
|
36 |
+
# tokenize the output so far
|
37 |
+
with tokenizer.as_target_tokenizer():
|
38 |
+
output_tokens = tokenizer.tokenize(output_so_far)
|
39 |
+
decoder_input_ids = tokenizer.convert_tokens_to_ids(output_tokens)
|
40 |
+
|
41 |
+
# Add the start token
|
42 |
+
decoder_input_ids = [model.config.decoder_start_token_id] + decoder_input_ids
|
43 |
+
|
44 |
+
with torch.no_grad():
|
45 |
+
model_output = model(
|
46 |
+
input_ids = input_ids,
|
47 |
+
decoder_input_ids = torch.tensor([decoder_input_ids]).to(device))
|
48 |
+
|
49 |
+
|
50 |
+
last_token_logits = model_output.logits[0, -1].cpu()
|
51 |
+
assert len(last_token_logits.shape) == 1
|
52 |
+
most_likely_tokens = last_token_logits.topk(k=5)
|
53 |
+
|
54 |
+
probs = last_token_logits.softmax(dim=-1)
|
55 |
+
probs_for_likely_tokens = probs[most_likely_tokens.indices]
|
56 |
+
|
57 |
+
with tokenizer.as_target_tokenizer():
|
58 |
+
probs_table = pd.DataFrame({
|
59 |
+
'token': [tokenizer.decode(token_id) for token_id in most_likely_tokens.indices],
|
60 |
+
'id': most_likely_tokens.indices,
|
61 |
+
'probability': probs_for_likely_tokens,
|
62 |
+
'logprob': probs_for_likely_tokens.log(),
|
63 |
+
'cumulative probability': probs_for_likely_tokens.cumsum(0)
|
64 |
+
})
|
65 |
+
|
66 |
+
|
67 |
+
st.write(probs_table)
|
68 |
+
st.write(model.config.decoder_start_token_id)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
pandas
|