File size: 3,533 Bytes
5d82ba5 c6ad3ed 5d82ba5 c6ad3ed 5d82ba5 b0e960e 5d82ba5 b0e960e 5d82ba5 b0e960e fca2f7e b0e960e 5d82ba5 b0e960e 5d82ba5 cb9a173 5d82ba5 b0e960e 5d82ba5 cb9a173 0d76975 b0e960e 5d82ba5 b0e960e 5d82ba5 b0e960e 5d82ba5 b0e960e 5d82ba5 b0e960e fca2f7e b0e960e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import os
import gradio as gr
import torch
import yaml
import numpy as np
from munch import munchify
import torchvision.transforms as transforms
from torchvision.transforms import functional as F
from diffusers import (
AutoPipelineForInpainting,
)
from generate_dataset import outpainting_generator_rectangle, merge_images_horizontally
from ddim_with_prob import DDIMSchedulerCustom
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((512, 512), interpolation=F.InterpolationMode.LANCZOS),
])
def pref_inpainting(image,
box_width_ratio,
mask_random_start,
steps,
):
with open("./configs/paintreward_train_configs.yaml") as file:
config_dict= yaml.safe_load(file)
config = munchify(config_dict)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Current Device is {device}")
pipe_ours = AutoPipelineForInpainting.from_pretrained(
'./model_ckpt', torch_dtype=torch.float16, variant='fp16')
pipe_ours.scheduler = DDIMSchedulerCustom.from_config(pipe_ours.scheduler.config)
pipe_runway = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant='fp16')
pipe_ours = pipe_ours.to(device)
pipe_runway = pipe_runway.to(device)
print('Loading pipeline')
color, mask = outpainting_generator_rectangle(image, box_width_ratio/100, mask_random_start)
mask = mask.convert('L')
color, mask = np.array(color).transpose(2, 0, 1), np.array(mask)
mask = mask[None, ...]
mask_ = np.zeros_like(mask)
mask_[mask < 125] = 0
mask_[mask >= 125] = 1
color = torch.from_numpy(color).to(device)
mask = torch.from_numpy(mask).to(device)
color, mask = transform(color), transform(mask)
res_ours = pipe_ours(prompt='', image=color, mask_image=mask, eta=config.eta).images[0]
print('Running inference ours')
res_runway = pipe_runway(prompt="", image=color, mask_image=mask).images[0]
print('Running inference runway')
# res.save(os.path.join('./', 'test.png'))
res_ours = merge_images_horizontally(color, res_ours, logo_path='./logo/pref_logo.png')
res_runway = merge_images_horizontally(color, res_runway, logo_path='./logo/runway_logo.png')
return res_ours, res_runway
inputs = [
gr.Image(type="pil", image_mode="RGBA", label='Input Image'), # shape=[512, 512]
gr.Slider(30, 45, value=35, step=1, label="box_width_ratio"),
gr.Slider(0, 256, value=125, step=1, label="mask_random_start"),
gr.Slider(30, 100, value=50, step=5, label="steps"),
]
outputs = [
gr.Image(type="pil", image_mode="RGBA", label='PrefPaint', container=True, width="100%"),
gr.Image(type="pil", image_mode="RGBA", label='RunwayPaint', container=True, width="100%"),
]
files = os.listdir("./assets")
examples = [
[f"./assets/{file_name}", 35, 125, 50] for file_name in files
]
with gr.Blocks() as demo:
iface = gr.Interface(
fn=pref_inpainting,
inputs=inputs,
outputs=outputs,
title="Inpainting with Human Preference (Utilizing Free CPU Resources)",
description="Upload an image and start your inpainting (currently only supporting outpainting masks; other mask types coming soon).",
theme="default",
examples=examples,
# allow_flagging="never"
)
# iface.launch()
demo.launch() |