|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
import numpy as np |
|
import torch |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin |
|
|
|
|
|
@dataclass |
|
|
|
class DDIMSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample (x_{0}) based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
pred_original_sample: Optional[torch.FloatTensor] = None |
|
log_prob: Optional[torch.FloatTensor] = None |
|
|
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor: |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return torch.tensor(betas) |
|
|
|
|
|
class DDIMSchedulerCustom(SchedulerMixin, ConfigMixin): |
|
""" |
|
Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising |
|
diffusion probabilistic models (DDPMs) with non-Markovian guidance. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2010.02502 |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
clip_sample (`bool`, default `True`): |
|
option to clip predicted sample between -1 and 1 for numerical stability. |
|
set_alpha_to_one (`bool`, default `True`): |
|
each diffusion step uses the value of alphas product at that step and at the previous one. For the final |
|
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, |
|
otherwise it uses the value of alpha at step 0. |
|
steps_offset (`int`, default `0`): |
|
an offset added to the inference steps. You can use a combination of `offset=1` and |
|
`set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in |
|
stable diffusion. |
|
prediction_type (`str`, default `epsilon`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion |
|
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 |
|
https://imagen.research.google/video/paper.pdf) |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
clip_sample: bool = True, |
|
set_alpha_to_one: bool = True, |
|
steps_offset: int = 0, |
|
prediction_type: str = "epsilon", |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = ( |
|
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
) |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
self.num_inference_steps = None |
|
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) |
|
|
|
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): input sample |
|
timestep (`int`, optional): current timestep |
|
|
|
Returns: |
|
`torch.FloatTensor`: scaled input sample |
|
""" |
|
return sample |
|
|
|
def _get_variance(self, timestep, prev_timestep): |
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) |
|
|
|
return variance |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
|
|
if num_inference_steps > self.config.num_train_timesteps: |
|
raise ValueError( |
|
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" |
|
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" |
|
f" maximal {self.config.num_train_timesteps} timesteps." |
|
) |
|
|
|
self.num_inference_steps = num_inference_steps |
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) |
|
self.timesteps = torch.from_numpy(timesteps).to(device) |
|
self.timesteps += self.config.steps_offset |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
eta: float = 0.0, |
|
use_clipped_model_output: bool = False, |
|
generator=None, |
|
variance_noise: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
prev_sample: Optional[torch.FloatTensor] = None, |
|
) -> Union[DDIMSchedulerOutput, Tuple]: |
|
""" |
|
|
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
First, the model_output is used to calculate the prev_sample_mean. If |
|
key is not None, some noise is added to produce prev_sample (with |
|
variance depending on eta). If prev_sample is not None, this function |
|
essentially just calculates the log_prob of prev_sample given |
|
prev_sample_mean, and prev_sample is returned unmodified. |
|
|
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
eta (`float`): weight of noise for added noise in diffusion step. |
|
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped |
|
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when |
|
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would |
|
coincide with the one provided as input and `use_clipped_model_output` will have not effect. |
|
generator: random number generator. |
|
variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we |
|
can directly provide the noise for the variance itself. This is useful for methods such as |
|
CycleDiffusion. (https://arxiv.org/abs/2210.05559) |
|
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
|
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
elif self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output |
|
|
|
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction`" |
|
) |
|
|
|
|
|
if self.config.clip_sample: |
|
pred_original_sample = torch.clamp(pred_original_sample, -1, 1) |
|
|
|
|
|
|
|
|
|
variance = self._get_variance(timestep, prev_timestep) |
|
std_dev_t = eta * variance ** (0.5) |
|
|
|
|
|
if use_clipped_model_output: |
|
|
|
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) |
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output |
|
|
|
|
|
prev_sample_mean = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
|
|
|
|
if prev_sample is None and eta > 0: |
|
device = model_output.device |
|
if variance_noise is not None and generator is not None: |
|
raise ValueError( |
|
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or" |
|
" `variance_noise` stays `None`." |
|
) |
|
|
|
if variance_noise is None: |
|
variance_noise = randn_tensor( |
|
model_output.shape, generator=generator, device=device, dtype=model_output.dtype |
|
) |
|
|
|
prev_sample = prev_sample_mean + std_dev_t * variance_noise |
|
|
|
|
|
log_prob = ( |
|
-((prev_sample - prev_sample_mean) ** 2) / (2 * (std_dev_t**2)) |
|
- math.log(std_dev_t) |
|
- math.log(math.sqrt(2 * math.pi)) |
|
) |
|
|
|
log_prob_mean = torch.mean(log_prob, axis=tuple(range(1, log_prob.ndim))) |
|
|
|
|
|
|
|
if not return_dict: |
|
return (prev_sample, pred_original_sample, log_prob, log_prob_mean) |
|
|
|
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample, log_prob=log_prob_mean) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.FloatTensor: |
|
|
|
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
return noisy_samples |
|
|
|
def get_velocity( |
|
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor |
|
) -> torch.FloatTensor: |
|
|
|
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype) |
|
timesteps = timesteps.to(sample.device) |
|
|
|
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(sample.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample |
|
return velocity |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|