import os import spaces import gradio as gr import torch import yaml import numpy as np from munch import munchify import torchvision.transforms as transforms from torchvision.transforms import functional as F from diffusers import ( AutoPipelineForInpainting, ) from generate_dataset import outpainting_generator_rectangle, merge_images_horizontally from ddim_with_prob import DDIMSchedulerCustom transform = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((512, 512), interpolation=F.InterpolationMode.LANCZOS), ]) @spaces.GPU(duration=120) def pref_inpainting(image, box_width_ratio, mask_random_start, steps, ): with open("./configs/paintreward_train_configs.yaml") as file: config_dict= yaml.safe_load(file) config = munchify(config_dict) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Current Device is {device}") pipe_ours = AutoPipelineForInpainting.from_pretrained( './model_ckpt', torch_dtype=torch.float16, variant='fp16') pipe_ours.scheduler = DDIMSchedulerCustom.from_config(pipe_ours.scheduler.config) pipe_runway = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant='fp16') pipe_ours = pipe_ours.to(device) pipe_runway = pipe_runway.to(device) print('Loading pipeline') color, mask = outpainting_generator_rectangle(image, box_width_ratio/100, mask_random_start) mask = mask.convert('L') color, mask = np.array(color).transpose(2, 0, 1), np.array(mask) mask = mask[None, ...] mask_ = np.zeros_like(mask) mask_[mask < 125] = 0 mask_[mask >= 125] = 1 color = torch.from_numpy(color).to(device) mask = torch.from_numpy(mask).to(device) color, mask = transform(color), transform(mask) res_ours = pipe_ours(prompt='', image=color, mask_image=mask, eta=config.eta).images[0] print('Running inference ours') res_runway = pipe_runway(prompt="", image=color, mask_image=mask).images[0] print('Running inference runway') # res.save(os.path.join('./', 'test.png')) res_ours = merge_images_horizontally(color, res_ours, logo_path='./logo/pref_logo.png') res_runway = merge_images_horizontally(color, res_runway, logo_path='./logo/runway_logo.png') return res_ours, res_runway inputs = [ gr.Image(type="pil", image_mode="RGBA", label='Input Image'), # shape=[512, 512] gr.Slider(30, 45, value=35, step=1, label="box_width_ratio"), gr.Slider(0, 256, value=125, step=1, label="mask_random_start"), gr.Slider(30, 100, value=50, step=5, label="steps"), ] outputs = [ gr.Image(type="pil", image_mode="RGBA", label='PrefPaint', container=True, width="100%"), gr.Image(type="pil", image_mode="RGBA", label='RunwayPaint', container=True, width="100%"), ] files = os.listdir("./assets") examples = [ [f"./assets/{file_name}", 35, 125, 50] for file_name in files ] with gr.Blocks() as demo: iface = gr.Interface( fn=pref_inpainting, inputs=inputs, outputs=outputs, title="Inpainting with Human Preference (Only one GPU is available, you may need to queue.)", description="Upload an image and start your inpainting (currently only supporting outpainting masks; other mask types coming soon).", theme="default", examples=examples, # allow_flagging="never" ) # iface.launch() demo.launch()