Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,84 @@
|
|
1 |
-
from fastapi import FastAPI, UploadFile,
|
2 |
from fastapi.responses import JSONResponse
|
|
|
3 |
import torch
|
|
|
|
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
import io
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
-
# FastAPI
|
10 |
app = FastAPI()
|
11 |
|
12 |
-
#
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILE)
|
21 |
-
model = torch.load(model_path, map_location=device)
|
22 |
-
model.eval()
|
23 |
|
24 |
-
#
|
25 |
transform = transforms.Compose([
|
26 |
-
transforms.Resize((224, 224)),
|
27 |
-
transforms.ToTensor(),
|
28 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
29 |
])
|
30 |
|
31 |
-
|
32 |
-
def predict(image: Image.Image):
|
33 |
-
input_tensor = transform(image).unsqueeze(0).to(device)
|
34 |
-
with torch.no_grad():
|
35 |
-
output = model(input_tensor).squeeze(0).cpu().numpy()
|
36 |
-
prediction = "Positive" if output[0] > 0.5 else "Negative"
|
37 |
-
return {"Prediction": prediction, "Probability": round(float(output[0]), 2)}
|
38 |
-
|
39 |
-
# Ana API rotası
|
40 |
-
@app.post("/predict")
|
41 |
-
async def predict_image(file: UploadFile = File(...)):
|
42 |
try:
|
43 |
-
|
44 |
-
|
45 |
-
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
46 |
-
|
47 |
-
# Tahmin yap
|
48 |
-
result = predict(image)
|
49 |
-
return JSONResponse(content=result)
|
50 |
except Exception as e:
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
return {"message": "Upload an image to /predict for classification."}
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, HTTPException
|
2 |
from fastapi.responses import JSONResponse
|
3 |
+
import uvicorn
|
4 |
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torchvision.models import vgg19
|
7 |
from torchvision import transforms
|
8 |
from PIL import Image
|
9 |
import io
|
|
|
10 |
|
11 |
+
# FastAPI uygulaması
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
# Modeli yükle ve ayarla
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
17 |
+
def load_model():
|
18 |
+
model = vgg19(pretrained=False) # Pretrained ağırlıklar olmadan model
|
19 |
+
model.classifier = nn.Sequential(
|
20 |
+
nn.Linear(25088, 12544), # 25088 -> 12544
|
21 |
+
nn.ReLU(),
|
22 |
+
nn.Dropout(0.5),
|
23 |
+
nn.Linear(12544, 6272), # 12544 -> 6272
|
24 |
+
nn.ReLU(),
|
25 |
+
nn.Dropout(0.5),
|
26 |
+
nn.Linear(6272, 3136), # 6272 -> 3136
|
27 |
+
nn.ReLU(),
|
28 |
+
nn.Dropout(0.4),
|
29 |
+
nn.Linear(3136, 1568), # 3136 -> 1568
|
30 |
+
nn.ReLU(),
|
31 |
+
nn.Dropout(0.4),
|
32 |
+
nn.Linear(1568, 784), # 1568 -> 784
|
33 |
+
nn.ReLU(),
|
34 |
+
nn.Dropout(0.3),
|
35 |
+
nn.Linear(784, 392), # 784 -> 392
|
36 |
+
nn.ReLU(),
|
37 |
+
nn.Dropout(0.3),
|
38 |
+
nn.Linear(392, 196), # 392 -> 196
|
39 |
+
nn.ReLU(),
|
40 |
+
nn.Dropout(0.2),
|
41 |
+
nn.Linear(196, 98), # 196 -> 98
|
42 |
+
nn.ReLU(),
|
43 |
+
nn.Dropout(0.2),
|
44 |
+
nn.Linear(98, 49), # 98 -> 49
|
45 |
+
nn.ReLU(),
|
46 |
+
nn.Dropout(0.1),
|
47 |
+
nn.Linear(49, 1), # 49 -> 1 (Binary classification)
|
48 |
+
nn.Sigmoid()
|
49 |
+
)
|
50 |
+
model = model.to(device)
|
51 |
+
model.load_state_dict(torch.load("best_model.pth", map_location=device))
|
52 |
+
model.eval()
|
53 |
+
return model
|
54 |
|
55 |
+
model = load_model()
|
|
|
|
|
|
|
56 |
|
57 |
+
# Görsel işleme transformasyonu
|
58 |
transform = transforms.Compose([
|
59 |
+
transforms.Resize((224, 224)),
|
60 |
+
transforms.ToTensor(),
|
61 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
62 |
])
|
63 |
|
64 |
+
def process_image(file: UploadFile):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
try:
|
66 |
+
image = Image.open(io.BytesIO(file.file.read())).convert("RGB")
|
67 |
+
return transform(image).unsqueeze(0).to(device)
|
|
|
|
|
|
|
|
|
|
|
68 |
except Exception as e:
|
69 |
+
raise HTTPException(status_code=400, detail=f"Invalid image file: {str(e)}")
|
70 |
+
|
71 |
+
# Ana endpoint
|
72 |
+
@app.post("/predict")
|
73 |
+
async def predict(file: UploadFile):
|
74 |
+
if not file.content_type.startswith("image/"):
|
75 |
+
raise HTTPException(status_code=400, detail="File must be an image.")
|
76 |
+
image_tensor = process_image(file)
|
77 |
+
with torch.no_grad():
|
78 |
+
output = model(image_tensor)
|
79 |
+
prediction = float(output.item())
|
80 |
+
return JSONResponse({"prediction": prediction})
|
81 |
|
82 |
+
# Uygulama başlatıcı
|
83 |
+
if __name__ == "__main__":
|
84 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|