Spaces:
Runtime error
Runtime error
LucFast
commited on
Commit
·
3d11acf
1
Parent(s):
3d38885
update with transcripton
Browse files- app.py +134 -4
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,7 +1,137 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import whisper
|
4 |
+
from pytube import YouTube
|
5 |
+
from yt_dlp import YoutubeDL
|
6 |
|
7 |
+
class GradioInference():
|
8 |
+
def __init__(self):
|
9 |
+
self.sizes = list(whisper._MODELS.keys())
|
10 |
+
self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
11 |
+
self.current_size = "base"
|
12 |
+
self.loaded_model = whisper.load_model(self.current_size)
|
13 |
+
|
14 |
+
def download_videos(link):
|
15 |
+
"""Specify the yt-dlp parameters
|
16 |
|
17 |
+
Args:
|
18 |
+
url (str): URL to retrieve videl
|
19 |
+
name (str): speaker name
|
20 |
+
"""
|
21 |
+
ydl_opts = {
|
22 |
+
"format": "m4a/bestaudio/best",
|
23 |
+
"postprocessors": [
|
24 |
+
{ # Extract audio using ffmpeg
|
25 |
+
"key": "FFmpegExtractAudio",
|
26 |
+
"preferredcodec": "wav",
|
27 |
+
}
|
28 |
+
],
|
29 |
+
"outtmpl": "tmp.wav",
|
30 |
+
}
|
31 |
+
|
32 |
+
with YoutubeDL(ydl_opts) as ydl:
|
33 |
+
ydl.download(link)
|
34 |
+
return "tmp.wav"
|
35 |
+
|
36 |
+
|
37 |
+
def detect_lang(self):
|
38 |
+
# load audio and pad/trim it to fit 30 seconds
|
39 |
+
audio = whisper.load_audio("tmp.wav")
|
40 |
+
audio_segment = whisper.pad_or_trim(audio)
|
41 |
+
|
42 |
+
# make log-Mel spectrogram and move to the same device as the model
|
43 |
+
mel = whisper.log_mel_spectrogram(audio_segment).to(self.loaded_model.device)
|
44 |
+
|
45 |
+
# detect the spoken language
|
46 |
+
_, probs = self.loaded_model.detect_language(mel)
|
47 |
+
language = max(probs, key=probs.get)
|
48 |
+
|
49 |
+
return language
|
50 |
+
|
51 |
+
def __call__(self, link, lang, size, subs):
|
52 |
+
if self.yt is None:
|
53 |
+
ret_path = self.download_videos(link)
|
54 |
+
|
55 |
+
if size != self.current_size:
|
56 |
+
self.loaded_model = whisper.load_model(size)
|
57 |
+
self.current_size = size
|
58 |
+
|
59 |
+
if lang == "none":
|
60 |
+
lang = self.detect_lang()
|
61 |
+
|
62 |
+
options = whisper.DecodingOptions().__dict__.copy()
|
63 |
+
options["language"] = lang
|
64 |
+
options["beam_size"] = 5
|
65 |
+
options["best_of"] = 5
|
66 |
+
del options["task"]
|
67 |
+
transcribe_options = dict(task="transcribe", **options)
|
68 |
+
translate_options = dict(task="translate", **options)
|
69 |
+
results = self.loaded_model.transcribe("tmp.wav", language=lang)
|
70 |
+
|
71 |
+
if subs == "None":
|
72 |
+
return results["text"]
|
73 |
+
elif subs == ".srt":
|
74 |
+
return self.srt(results["segments"])
|
75 |
+
elif ".csv" == ".csv":
|
76 |
+
return self.csv(results["segments"])
|
77 |
+
|
78 |
+
def srt(self, segments):
|
79 |
+
output = ""
|
80 |
+
for i, segment in enumerate(segments):
|
81 |
+
output += f"{i+1}\n"
|
82 |
+
output += f"{self.format_time(segment['start'])} --> {self.format_time(segment['end'])}\n"
|
83 |
+
output += f"{segment['text']}\n\n"
|
84 |
+
return output
|
85 |
+
|
86 |
+
def csv(self, segments):
|
87 |
+
output = ""
|
88 |
+
for segment in segments:
|
89 |
+
output += f"{segment['start']},{segment['end']},{segment['text']}\n"
|
90 |
+
return output
|
91 |
+
|
92 |
+
def format_time(self, time):
|
93 |
+
hours = time//3600
|
94 |
+
minutes = (time - hours*3600)//60
|
95 |
+
seconds = time - hours*3600 - minutes*60
|
96 |
+
milliseconds = (time - int(time))*1000
|
97 |
+
return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d},{int(milliseconds):03d}"
|
98 |
+
|
99 |
+
def populate_metadata(self, link):
|
100 |
+
self.yt = YouTube(link)
|
101 |
+
return self.yt.thumbnail_url, self.yt.title
|
102 |
+
|
103 |
+
gio = GradioInference()
|
104 |
+
title="Youtube Whisperer"
|
105 |
+
description="Speech to text transcription of Youtube videos using OpenAI's Whisper"
|
106 |
+
|
107 |
+
block = gr.Blocks()
|
108 |
+
with block:
|
109 |
+
gr.HTML(
|
110 |
+
"""
|
111 |
+
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
|
112 |
+
<div>
|
113 |
+
<h1>Youtube Whisperer</h1>
|
114 |
+
</div>
|
115 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
116 |
+
Speech to text transcription of Youtube videos using OpenAI's Whisper
|
117 |
+
</p>
|
118 |
+
</div>
|
119 |
+
"""
|
120 |
+
)
|
121 |
+
with gr.Group():
|
122 |
+
with gr.Box():
|
123 |
+
with gr.Row().style(equal_height=True):
|
124 |
+
sz = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
|
125 |
+
lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
|
126 |
+
with gr.Row().style(equal_height=True):
|
127 |
+
wt = gr.Radio(["None", ".srt", ".csv"], label="With Timestamps?")
|
128 |
+
link = gr.Textbox(label="YouTube Link")
|
129 |
+
title = gr.Label(label="Video Title")
|
130 |
+
with gr.Row().style(equal_height=True):
|
131 |
+
img = gr.Image(label="Thumbnail")
|
132 |
+
text = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=10)
|
133 |
+
with gr.Row().style(equal_height=True):
|
134 |
+
btn = gr.Button("Transcribe")
|
135 |
+
btn.click(gio, inputs=[link, lang, sz, wt], outputs=[text])
|
136 |
+
link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
|
137 |
+
block.launch()
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
git+https://github.com/openai/whisper.git
|
2 |
-
yt-dlp
|
|
|
|
1 |
git+https://github.com/openai/whisper.git
|
2 |
+
yt-dlp
|
3 |
+
pytube
|