File size: 23,846 Bytes
f948384 e13eaea f948384 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel, Tool, PythonInterpreterTool
import os
import re
import requests
import pandas as pd
from youtube_transcript_api import YouTubeTranscriptApi
import whisper
from SPARQLWrapper import SPARQLWrapper, JSON
import chess
import chess.engine
import shutil
import traceback
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class YouTubeTranscriptTool(Tool):
name = "youtube_transcript"
description = (
"Fetches the transcript of a YouTube video given its URL or ID.\n"
"Returns plain text (no timestamps) or raw with timestamps."
)
inputs = {
"video_url": {"type": "string", "description": "YouTube URL or video ID."},
"raw": {"type": "boolean", "description": "Include timestamps?", "nullable": True}
}
output_type = "string"
def forward(self, video_url: str, raw: bool = False) -> str:
# Extract video ID
video_id = video_url.strip().split("?v=")[-1]
transcript = YouTubeTranscriptApi.get_transcript(video_id)
if raw:
return "\n".join(f"{int(e['start'])}s: {e['text']}" for e in transcript)
return " ".join(e['text'] for e in transcript)
class SpeechToTextTool(Tool):
name = "speech_to_text"
description = (
"Converts an audio file to text using OpenAI Whisper."
)
inputs = {
"audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
}
output_type = "string"
def __init__(self):
super().__init__()
self.model = whisper.load_model("base")
def forward(self, audio_path: str) -> str:
if not os.path.exists(audio_path):
return f"Error: File not found at {audio_path}"
result = self.model.transcribe(audio_path)
return result.get("text", "")
class WikidataQueryTool(Tool):
name = "wikidata_query"
description = (
"Runs SPARQL queries on Wikidata and returns JSON results."
)
inputs = {
"query": {"type": "string", "description": "The SPARQL query to execute."}
}
output_type = "dict"
def forward(self, query: str) -> dict:
sparql = SPARQLWrapper("https://query.wikidata.org/sparql")
sparql.setQuery(query)
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
return results
class WikipediaAPIExtractor(Tool):
name = "wikipedia_api"
description = (
"Fetches and parses a Wikipedia page's sections as structured JSON."
)
inputs = {
"page_title": {"type": "string", "description": "Title of the Wikipedia page."}
}
output_type = "dict"
def forward(self, page_title: str) -> dict:
api_url = (
f"https://en.wikipedia.org/api/rest_v1/page/mobile-sections/{page_title}"
)
resp = requests.get(api_url)
resp.raise_for_status()
data = resp.json()
# merge lead with sections without requiring Python 3.9's dict union
lead = data.get("lead", {})
sections = data.get("remaining", {}).get("sections", [])
return {**lead, "sections": sections}
class TableParseTool(Tool):
name = "table_parse"
description = (
"Parses an ASCII or markdown table (or image) into a pandas DataFrame."
)
inputs = {
"table_text": {"type": "string", "description": "The raw table string."}
}
output_type = "pandas.DataFrame"
def forward(self, table_text: str) -> pd.DataFrame:
# Leveraging pandas read_csv on StringIO with markdown separators
from io import StringIO
# Clean pipes and extra spaces
clean = re.sub(r"^\||\|$", "", table_text.strip(), flags=re.MULTILINE)
return pd.read_csv(StringIO(clean), sep=r"\s*\|\s*", engine="python")
class ChessEngineTool(Tool):
name = "chess_engine"
description = "Analyzes a chess position (FEN) with Stockfish and returns the best move."
inputs = {
"fen": {"type": "string", "description": "FEN string of the position."},
"time_limit": {"type": "number", "description": "Time in seconds for engine analysis.", "nullable": True}
}
output_type = "string"
def forward(self, fen: str, time_limit: float = 0.1) -> str:
# figure out where the binary actually is
sf_bin = shutil.which("stockfish") or "/usr/games/stockfish"
if not sf_bin:
raise RuntimeError(
f"Cannot find stockfish on PATH or at /usr/games/stockfish. "
"Did you install it in apt.txt or via apt-get?"
)
board = chess.Board(fen)
engine = chess.engine.SimpleEngine.popen_uci(sf_bin)
result = engine.play(board, chess.engine.Limit(time=time_limit))
engine.quit()
return board.san(result.move)
class RegexTool(Tool):
name = "regex"
description = (
"Performs regex search and replace on an input string."
)
inputs = {
"text": {"type": "string", "description": "Input text."},
"pattern": {"type": "string", "description": "Regex pattern."},
"replacement": {"type": "string", "description": "Replacement string."}
}
output_type = "string"
def forward(self, text: str, pattern: str, replacement: str) -> str:
return re.sub(pattern, replacement, text)
class MathSolverTool(Tool):
name = "math_solver"
description = (
"Solves arithmetic or symbolic expressions via sympy or numpy."
)
inputs = {
"expression": {"type": "string", "description": "Math expression to solve."}
}
output_type = "string"
def forward(self, expression: str) -> str:
try:
import sympy as sp
expr = sp.sympify(expression)
solution = sp.solve(expr)
return str(solution)
except Exception:
try:
result = eval(expression, {"__builtins__": None}, {})
return str(result)
except Exception as e:
return f"Error evaluating expression: {e}"
# Custom file reading tool
class FileReadTool(Tool):
name = "file_reader"
description = """
This tool reads the content of text files.
It's useful for processing plain text files (.txt, .csv, .json, etc).
"""
inputs = {
"file_path": {
"type": "string",
"description": "The path to the file to read",
}
}
output_type = "string"
def forward(self, file_path: str) -> str:
"""
Reads the content of the given file.
"""
try:
# Check if the file exists
if not os.path.exists(file_path):
return f"Error: File not found at {file_path}"
# Read the file
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
# If the content is too long, truncate it
if len(content) > 10000:
content = content[:10000] + "...\n[Text truncated due to length]"
return content or "File is empty."
except Exception as e:
return f"Error reading file: {str(e)}"
class PDFReaderTool(Tool):
name = "pdf_reader"
description = """
This tool extracts text content from PDF files.
It's useful for reading research papers, reports, or other document types.
"""
inputs = {
"pdf_path": {
"type": "string",
"description": "The path to the PDF file to read",
}
}
output_type = "string"
def forward(self, pdf_path: str) -> str:
"""
Extracts text from the given PDF file.
"""
try:
# Check if the file exists
if not os.path.exists(pdf_path):
return f"Error: PDF file not found at {pdf_path}"
import PyPDF2
# Open the PDF file
with open(pdf_path, 'rb') as file:
# Create a PDF reader object
pdf_reader = PyPDF2.PdfReader(file)
# Get the number of pages
num_pages = len(pdf_reader.pages)
# Extract text from all pages
text = ""
for page_num in range(num_pages):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n\n"
# If the text is too long, truncate it
if len(text) > 10000:
text = text[:10000] + "...\n[Text truncated due to length]"
return text or "No text could be extracted from the PDF."
except Exception as e:
return f"Error reading PDF: {str(e)}"
class ExcelReaderTool(Tool):
name = "excel_reader"
description = """
This tool reads and processes Excel files (.xlsx, .xls).
It can extract data, calculate statistics, and perform data analysis on spreadsheets.
"""
inputs = {
"excel_path": {
"type": "string",
"description": "The path to the Excel file to read",
},
"sheet_name": {
"type": "string",
"description": "The name of the sheet to read (optional, defaults to first sheet)",
"nullable": True
}
}
output_type = "string"
def forward(self, excel_path: str, sheet_name: str = None) -> str:
"""
Reads and processes the given Excel file.
"""
try:
# Check if the file exists
if not os.path.exists(excel_path):
return f"Error: Excel file not found at {excel_path}"
import pandas as pd
# Read the Excel file
if sheet_name:
df = pd.read_excel(excel_path, sheet_name=sheet_name)
else:
df = pd.read_excel(excel_path)
# Get basic info about the data
info = {
"shape": df.shape,
"columns": list(df.columns),
"dtypes": df.dtypes.to_dict(),
"head": df.head(5).to_dict()
}
# Return formatted info
result = f"Excel file: {excel_path}\n"
result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
result += "Columns:\n"
for col in info['columns']:
result += f"- {col} ({info['dtypes'].get(col)})\n"
result += "\nPreview (first 5 rows):\n"
result += df.head(5).to_string()
return result
except Exception as e:
return f"Error reading Excel file: {str(e)}"
class ImageAnalysisTool(Tool):
name = "image_analysis"
description = """
This tool analyzes an image and extracts relevant information from it.
It can describe image content, extract text from images, identify objects, etc.
"""
inputs = {
"image_path": {
"type": "string",
"description": "The path to the image file to analyze",
}
}
output_type = "string"
def forward(self, image_path: str) -> str:
"""
Analyzes the given image and returns relevant information using OpenAI's ChatGPT API.
"""
try:
# Check if the file exists
if not os.path.exists(image_path):
return f"Error: Image file not found at {image_path}"
import requests
import base64
import json
from PIL import Image
# Load the image
with open(image_path, "rb") as image_file:
image_bytes = image_file.read()
# Convert to base64 for OpenAI API
encoded_image = base64.b64encode(image_bytes).decode('utf-8')
# Get API key from environment
api_key = os.getenv('OPENAI_API_KEY', '')
if not api_key:
return "OpenAI API key not configured. Please add the OPENAI_API_KEY to your environment variables."
# Prepare the API request for ChatGPT with vision capabilities
api_url = "https://api.openai.com/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": "gpt-4o-mini-2024-07-18", # Vision-capable model
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Analyze this image in detail. Describe what you see, including main subjects, activities, background elements, colors, and any text visible in the image. If there's text in the image, please extract it."
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_image}"
}
}
]
}
],
"max_tokens": 500
}
response = requests.post(
api_url,
headers=headers,
json=payload
)
if response.status_code != 200:
return f"Error: OpenAI API returned status code {response.status_code}. Details: {response.text}"
result = response.json()
# Extract the response content
if "choices" in result and len(result["choices"]) > 0:
analysis = result["choices"][0]["message"]["content"]
return f"Image analysis result: {analysis}"
else:
return f"Error: Unexpected response format from OpenAI API: {result}"
except Exception as e:
return f"Error analyzing image: {str(e)}"
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
# Initialize the model
model = OpenAIServerModel(model_id="gpt-4o-mini-2024-07-18")
# Initialize tools
self.tools = [
YouTubeTranscriptTool(),
SpeechToTextTool(),
ChessEngineTool(),
DuckDuckGoSearchTool(), # Built-in web search tool
FileReadTool(), # Custom file reader
PDFReaderTool(), # PDF reader
ExcelReaderTool(), # Excel reader
ImageAnalysisTool(), # Image analysis
# Code execution
]
# Initialize Agent
self.agent = CodeAgent(
model=model,
tools=self.tools,
add_base_tools=True, # Add basic tools like math
)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
try:
answer = self.agent.run(question)
print(f"Agent returned answer (first 50 chars): {answer[:50]}...")
return answer
except Exception as e:
print(traceback.format_exc())
error_msg = f"Error running agent: {str(e)}"
print(error_msg)
return f"I encountered an issue while processing your question: {str(e)}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a Hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
print(f"Processing task {task_id}: {question_text[:50]}...")
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
print(f"Completed task {task_id}")
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Advanced Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Note:**
Once you click on the "submit" button, it may take quite some time as the agent processes all the questions.
The agent is using SmolaAgents with multiple tools including web search, file processing, and code execution.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Advanced Agent Evaluation...")
demo.launch(debug=True, share=False) |