File size: 23,846 Bytes
f948384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13eaea
f948384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel, Tool, PythonInterpreterTool
import os
import re
import requests
import pandas as pd
from youtube_transcript_api import YouTubeTranscriptApi
import whisper
from SPARQLWrapper import SPARQLWrapper, JSON
import chess
import chess.engine
import shutil
import traceback
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class YouTubeTranscriptTool(Tool):
    name = "youtube_transcript"
    description = (
        "Fetches the transcript of a YouTube video given its URL or ID.\n"
        "Returns plain text (no timestamps) or raw with timestamps."
    )
    inputs = {
        "video_url": {"type": "string", "description": "YouTube URL or video ID."},
        "raw": {"type": "boolean", "description": "Include timestamps?", "nullable": True}
    }
    output_type = "string"

    def forward(self, video_url: str, raw: bool = False) -> str:
        # Extract video ID
        video_id = video_url.strip().split("?v=")[-1]
        transcript = YouTubeTranscriptApi.get_transcript(video_id)
        if raw:
            return "\n".join(f"{int(e['start'])}s: {e['text']}" for e in transcript)
        return " ".join(e['text'] for e in transcript)


class SpeechToTextTool(Tool):
    name = "speech_to_text"
    description = (
        "Converts an audio file to text using OpenAI Whisper."
    )
    inputs = {
        "audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
    }
    output_type = "string"

    def __init__(self):
        super().__init__()
        self.model = whisper.load_model("base")

    def forward(self, audio_path: str) -> str:
        if not os.path.exists(audio_path):
            return f"Error: File not found at {audio_path}"
        result = self.model.transcribe(audio_path)
        return result.get("text", "")

class WikidataQueryTool(Tool):
    name = "wikidata_query"
    description = (
        "Runs SPARQL queries on Wikidata and returns JSON results."
    )
    inputs = {
        "query": {"type": "string", "description": "The SPARQL query to execute."}
    }
    output_type = "dict"

    def forward(self, query: str) -> dict:
        sparql = SPARQLWrapper("https://query.wikidata.org/sparql")
        sparql.setQuery(query)
        sparql.setReturnFormat(JSON)
        results = sparql.query().convert()
        return results


class WikipediaAPIExtractor(Tool):
    name = "wikipedia_api"
    description = (
        "Fetches and parses a Wikipedia page's sections as structured JSON."  
    )
    inputs = {
        "page_title": {"type": "string", "description": "Title of the Wikipedia page."}
    }
    output_type = "dict"

    def forward(self, page_title: str) -> dict:
        api_url = (
            f"https://en.wikipedia.org/api/rest_v1/page/mobile-sections/{page_title}"
        )
        resp = requests.get(api_url)
        resp.raise_for_status()
        data = resp.json()
        # merge lead with sections without requiring Python 3.9's dict union
        lead = data.get("lead", {})
        sections = data.get("remaining", {}).get("sections", [])
        return {**lead, "sections": sections}
    
class TableParseTool(Tool):
    name = "table_parse"
    description = (
        "Parses an ASCII or markdown table (or image) into a pandas DataFrame."
    )
    inputs = {
        "table_text": {"type": "string", "description": "The raw table string."}
    }
    output_type = "pandas.DataFrame"

    def forward(self, table_text: str) -> pd.DataFrame:
        # Leveraging pandas read_csv on StringIO with markdown separators
        from io import StringIO
        # Clean pipes and extra spaces
        clean = re.sub(r"^\||\|$", "", table_text.strip(), flags=re.MULTILINE)
        return pd.read_csv(StringIO(clean), sep=r"\s*\|\s*", engine="python")

class ChessEngineTool(Tool):
    name = "chess_engine"
    description = "Analyzes a chess position (FEN) with Stockfish and returns the best move."
    inputs = {
        "fen": {"type": "string", "description": "FEN string of the position."},
        "time_limit": {"type": "number", "description": "Time in seconds for engine analysis.", "nullable": True}
    }
    output_type = "string"

    def forward(self, fen: str, time_limit: float = 0.1) -> str:
        # figure out where the binary actually is
        sf_bin = shutil.which("stockfish") or "/usr/games/stockfish"
        if not sf_bin:
            raise RuntimeError(
                f"Cannot find stockfish on PATH or at /usr/games/stockfish. "
                "Did you install it in apt.txt or via apt-get?"
            )

        board = chess.Board(fen)
        engine = chess.engine.SimpleEngine.popen_uci(sf_bin)
        result = engine.play(board, chess.engine.Limit(time=time_limit))
        engine.quit()
        return board.san(result.move)
    
class RegexTool(Tool):
    name = "regex"
    description = (
        "Performs regex search and replace on an input string."
    )
    inputs = {
        "text": {"type": "string", "description": "Input text."},
        "pattern": {"type": "string", "description": "Regex pattern."},
        "replacement": {"type": "string", "description": "Replacement string."}
    }
    output_type = "string"

    def forward(self, text: str, pattern: str, replacement: str) -> str:
        return re.sub(pattern, replacement, text)


class MathSolverTool(Tool):
    name = "math_solver"
    description = (
        "Solves arithmetic or symbolic expressions via sympy or numpy."
    )
    inputs = {
        "expression": {"type": "string", "description": "Math expression to solve."}
    }
    output_type = "string"

    def forward(self, expression: str) -> str:
        try:
            import sympy as sp
            expr = sp.sympify(expression)
            solution = sp.solve(expr)
            return str(solution)
        except Exception:
            try:
                result = eval(expression, {"__builtins__": None}, {})
                return str(result)
            except Exception as e:
                return f"Error evaluating expression: {e}"

# Custom file reading tool
class FileReadTool(Tool):
    name = "file_reader"
    description = """
    This tool reads the content of text files.
    It's useful for processing plain text files (.txt, .csv, .json, etc).
    """
    inputs = {
        "file_path": {
            "type": "string",
            "description": "The path to the file to read",
        }
    }
    output_type = "string"
    
    def forward(self, file_path: str) -> str:
        """
        Reads the content of the given file.
        """
        try:
            # Check if the file exists
            if not os.path.exists(file_path):
                return f"Error: File not found at {file_path}"
                
            # Read the file
            with open(file_path, 'r', encoding='utf-8') as file:
                content = file.read()
                
            # If the content is too long, truncate it
            if len(content) > 10000:
                content = content[:10000] + "...\n[Text truncated due to length]"
                
            return content or "File is empty."
            
        except Exception as e:
            return f"Error reading file: {str(e)}"

class PDFReaderTool(Tool):
    name = "pdf_reader"
    description = """
    This tool extracts text content from PDF files.
    It's useful for reading research papers, reports, or other document types.
    """
    inputs = {
        "pdf_path": {
            "type": "string",
            "description": "The path to the PDF file to read",
        }
    }
    output_type = "string"
    
    def forward(self, pdf_path: str) -> str:
        """
        Extracts text from the given PDF file.
        """
        try:
            # Check if the file exists
            if not os.path.exists(pdf_path):
                return f"Error: PDF file not found at {pdf_path}"
                
            import PyPDF2
            
            # Open the PDF file
            with open(pdf_path, 'rb') as file:
                # Create a PDF reader object
                pdf_reader = PyPDF2.PdfReader(file)
                
                # Get the number of pages
                num_pages = len(pdf_reader.pages)
                
                # Extract text from all pages
                text = ""
                for page_num in range(num_pages):
                    page = pdf_reader.pages[page_num]
                    text += page.extract_text() + "\n\n"
                
                # If the text is too long, truncate it
                if len(text) > 10000:
                    text = text[:10000] + "...\n[Text truncated due to length]"
                
                return text or "No text could be extracted from the PDF."
                
        except Exception as e:
            return f"Error reading PDF: {str(e)}"

class ExcelReaderTool(Tool):
    name = "excel_reader"
    description = """
    This tool reads and processes Excel files (.xlsx, .xls).
    It can extract data, calculate statistics, and perform data analysis on spreadsheets.
    """
    inputs = {
        "excel_path": {
            "type": "string",
            "description": "The path to the Excel file to read",
        },
        "sheet_name": {
            "type": "string",
            "description": "The name of the sheet to read (optional, defaults to first sheet)",
            "nullable": True
        }
    }
    output_type = "string"
    
    def forward(self, excel_path: str, sheet_name: str = None) -> str:
        """
        Reads and processes the given Excel file.
        """
        try:
            # Check if the file exists
            if not os.path.exists(excel_path):
                return f"Error: Excel file not found at {excel_path}"
                
            import pandas as pd
            
            # Read the Excel file
            if sheet_name:
                df = pd.read_excel(excel_path, sheet_name=sheet_name)
            else:
                df = pd.read_excel(excel_path)
                
            # Get basic info about the data
            info = {
                "shape": df.shape,
                "columns": list(df.columns),
                "dtypes": df.dtypes.to_dict(),
                "head": df.head(5).to_dict()
            }
            
            # Return formatted info
            result = f"Excel file: {excel_path}\n"
            result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
            result += "Columns:\n"
            for col in info['columns']:
                result += f"- {col} ({info['dtypes'].get(col)})\n"
            
            result += "\nPreview (first 5 rows):\n"
            result += df.head(5).to_string()
            
            return result
            
        except Exception as e:
            return f"Error reading Excel file: {str(e)}"

class ImageAnalysisTool(Tool):
    name = "image_analysis"
    description = """
    This tool analyzes an image and extracts relevant information from it.
    It can describe image content, extract text from images, identify objects, etc.
    """
    inputs = {
        "image_path": {
            "type": "string",
            "description": "The path to the image file to analyze",
        }
    }
    output_type = "string"
    
    def forward(self, image_path: str) -> str:
        """
        Analyzes the given image and returns relevant information using OpenAI's ChatGPT API.
        """
        try:
            # Check if the file exists
            if not os.path.exists(image_path):
                return f"Error: Image file not found at {image_path}"
                
            import requests
            import base64
            import json
            from PIL import Image
            
            # Load the image
            with open(image_path, "rb") as image_file:
                image_bytes = image_file.read()
                
            # Convert to base64 for OpenAI API
            encoded_image = base64.b64encode(image_bytes).decode('utf-8')
            
            # Get API key from environment
            api_key = os.getenv('OPENAI_API_KEY', '')
            if not api_key:
                return "OpenAI API key not configured. Please add the OPENAI_API_KEY to your environment variables."
            
            # Prepare the API request for ChatGPT with vision capabilities
            api_url = "https://api.openai.com/v1/chat/completions"
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {api_key}"
            }
            
            payload = {
                "model": "gpt-4o-mini-2024-07-18",  # Vision-capable model
                "messages": [
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": "Analyze this image in detail. Describe what you see, including main subjects, activities, background elements, colors, and any text visible in the image. If there's text in the image, please extract it."
                            },
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": f"data:image/jpeg;base64,{encoded_image}"
                                }
                            }
                        ]
                    }
                ],
                "max_tokens": 500
            }
            
            response = requests.post(
                api_url,
                headers=headers,
                json=payload
            )
            
            if response.status_code != 200:
                return f"Error: OpenAI API returned status code {response.status_code}. Details: {response.text}"
                
            result = response.json()
            
            # Extract the response content
            if "choices" in result and len(result["choices"]) > 0:
                analysis = result["choices"][0]["message"]["content"]
                return f"Image analysis result: {analysis}"
            else:
                return f"Error: Unexpected response format from OpenAI API: {result}"
                
        except Exception as e:
            return f"Error analyzing image: {str(e)}"

# --- Basic Agent Definition ---
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        # Initialize the model
        model = OpenAIServerModel(model_id="gpt-4o-mini-2024-07-18")
        
        # Initialize tools
        self.tools = [
            YouTubeTranscriptTool(),
            SpeechToTextTool(),
            ChessEngineTool(),
            
            DuckDuckGoSearchTool(),  # Built-in web search tool
            FileReadTool(),          # Custom file reader
            PDFReaderTool(),         # PDF reader
            ExcelReaderTool(),       # Excel reader
            ImageAnalysisTool(),     # Image analysis
                   # Code execution
        ]
        
        # Initialize Agent
        self.agent = CodeAgent(
            model=model,
            tools=self.tools,
            add_base_tools=True, # Add basic tools like math
        )
        
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        try:
            answer = self.agent.run(question)
            print(f"Agent returned answer (first 50 chars): {answer[:50]}...")
            return answer
        except Exception as e:
            print(traceback.format_exc())
            error_msg = f"Error running agent: {str(e)}"
            print(error_msg)
            return f"I encountered an issue while processing your question: {str(e)}"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    # In the case of an app running as a Hugging Face space, this link points toward your codebase
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            print(f"Processing task {task_id}: {question_text[:50]}...")
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            print(f"Completed task {task_id}")
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Advanced Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Note:**
        Once you click on the "submit" button, it may take quite some time as the agent processes all the questions.
        The agent is using SmolaAgents with multiple tools including web search, file processing, and code execution.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Advanced Agent Evaluation...")
    demo.launch(debug=True, share=False)