Create CustomAgent.py
Browse files- CustomAgent.py +137 -0
CustomAgent.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
from langchain.docstore.document import Document
|
3 |
+
# Load the dataset
|
4 |
+
# guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
|
5 |
+
|
6 |
+
# Convert dataset entries into Document objects
|
7 |
+
# docs = [
|
8 |
+
# Document(
|
9 |
+
# page_content="\n".join([
|
10 |
+
# f"Name: {guest['name']}",
|
11 |
+
# f"Relation: {guest['relation']}",
|
12 |
+
# f"Description: {guest['description']}",
|
13 |
+
# f"Email: {guest['email']}"
|
14 |
+
# ]),
|
15 |
+
# metadata={"name": guest["name"]}
|
16 |
+
# )
|
17 |
+
# for guest in guest_dataset
|
18 |
+
# ]
|
19 |
+
|
20 |
+
# from langchain_community.retrievers import BM25Retriever
|
21 |
+
# from langchain.tools import Tool
|
22 |
+
|
23 |
+
# bm25_retriever = BM25Retriever.from_documents(docs)
|
24 |
+
|
25 |
+
# def extract_text(query: str) -> str:
|
26 |
+
# """Retrieves detailed information about gala guests based on their name or relation."""
|
27 |
+
# results = bm25_retriever.invoke(query)
|
28 |
+
# if results:
|
29 |
+
# return "\n\n".join([doc.page_content for doc in results[:3]])
|
30 |
+
# else:
|
31 |
+
# return "No matching guest information found."
|
32 |
+
|
33 |
+
# guest_info_tool = Tool(
|
34 |
+
# name="guest_info_retriever",
|
35 |
+
# func=extract_text,
|
36 |
+
# description="Retrieves detailed information about gala guests based on their name or relation."
|
37 |
+
# )
|
38 |
+
#######################################################################################################################################################
|
39 |
+
from typing import TypedDict, Annotated
|
40 |
+
from langgraph.graph.message import add_messages
|
41 |
+
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage,SystemMessage
|
42 |
+
from langgraph.prebuilt import ToolNode
|
43 |
+
from langgraph.graph import START, StateGraph
|
44 |
+
from langgraph.prebuilt import tools_condition
|
45 |
+
from langchain_openai import ChatOpenAI
|
46 |
+
from Webserch_tool import weather_info_tool
|
47 |
+
from other_tools import (
|
48 |
+
wiki_search, arvix_search, web_search, vector_search,
|
49 |
+
multiply, add, subtract, divide, modulus, power, square_root
|
50 |
+
)
|
51 |
+
import os
|
52 |
+
from dotenv import load_dotenv
|
53 |
+
load_dotenv()
|
54 |
+
# Generate the chat interface, including the tools
|
55 |
+
llm = ChatOpenAI(temperature=0
|
56 |
+
, model="gpt-4o-mini", openai_api_key=os.getenv("OPENAI_KEY"))
|
57 |
+
|
58 |
+
tools = [
|
59 |
+
weather_info_tool, wiki_search, arvix_search, web_search,
|
60 |
+
multiply, add, subtract, divide, modulus, power, square_root
|
61 |
+
]
|
62 |
+
chat_with_tools = llm.bind_tools(tools)
|
63 |
+
|
64 |
+
#setting up prompt
|
65 |
+
ai_message = SystemMessage(content="""You are a helpful assistant tasked with answering questions using a set of tools and reference materials.
|
66 |
+
|
67 |
+
You may be provided with a reference set of questions and answers from a retriever.
|
68 |
+
If the current question is identical to or semantically equivalent to a reference question, or if a reference answer clearly applies, use that reference answer directly.
|
69 |
+
|
70 |
+
Otherwise, reason through the question as needed to determine the correct answer.
|
71 |
+
|
72 |
+
Your output must follow these formatting rules:
|
73 |
+
- If the answer is a number, do not use commas or units (unless specifically requested).
|
74 |
+
- If the answer is a string, do not use articles, abbreviations, or short forms. Write digits in full unless specified otherwise.
|
75 |
+
- If the answer is a comma-separated list, apply the above rules to each item and include exactly one space after each comma.
|
76 |
+
- If the question matches a reference question, return the reference answer exactly as it appears.
|
77 |
+
|
78 |
+
Do not include any explanation, prefix, or extra text—output only the final answer.
|
79 |
+
""")
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
# Generate the AgentState and Agent graph
|
87 |
+
from langgraph.graph import MessagesState #the same as AgentState
|
88 |
+
# class AgentState(TypedDict):
|
89 |
+
# messages: Annotated[list[AnyMessage], add_messages]
|
90 |
+
|
91 |
+
def assistant(state: MessagesState):
|
92 |
+
return {
|
93 |
+
"messages": [chat_with_tools.invoke(state["messages"])],
|
94 |
+
}
|
95 |
+
|
96 |
+
def retriever(state: MessagesState):
|
97 |
+
"""Retriever node"""
|
98 |
+
similar_question = vector_search(state["messages"][0].content)
|
99 |
+
|
100 |
+
if similar_question:
|
101 |
+
example_msg = HumanMessage(
|
102 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question}",
|
103 |
+
)
|
104 |
+
print(f"Similar question found: {similar_question}")
|
105 |
+
return {"messages": [ai_message] + state["messages"] + [example_msg]}
|
106 |
+
else:
|
107 |
+
# Handle the case when no similar questions are found
|
108 |
+
print( "No similar question found.")
|
109 |
+
return {"messages": [ai_message] + state["messages"]}
|
110 |
+
|
111 |
+
## The graph
|
112 |
+
builder = StateGraph(MessagesState)
|
113 |
+
|
114 |
+
|
115 |
+
# Define nodes: these do the work
|
116 |
+
builder.add_node("assistant", assistant)
|
117 |
+
builder.add_node("retriever", retriever)
|
118 |
+
builder.add_node("tools", ToolNode(tools))
|
119 |
+
|
120 |
+
# Define edges: these determine how the control flow moves
|
121 |
+
builder.add_edge(START, "retriever")
|
122 |
+
builder.add_edge("retriever", "assistant")
|
123 |
+
builder.add_conditional_edges(
|
124 |
+
"assistant",
|
125 |
+
# If the latest message requires a tool, route to tools
|
126 |
+
# Otherwise, provide a direct response
|
127 |
+
tools_condition,
|
128 |
+
)
|
129 |
+
builder.add_edge("tools", "assistant")
|
130 |
+
alfred = builder.compile()
|
131 |
+
|
132 |
+
# messages = [HumanMessage(content="When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?")]
|
133 |
+
# #messages = [HumanMessage(content="What the remainder of 30 divided by 7?")]
|
134 |
+
# response = alfred.invoke({"messages": messages})
|
135 |
+
|
136 |
+
|
137 |
+
# print(response['messages'][-1].content)
|