Spaces:
Running
Running
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
from huggingface_hub import InferenceClient | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
import re | |
import os | |
from tools.final_answer import FinalAnswerTool | |
from tools.visit_webpage import VisitWebpageTool | |
from Gradio_UI import GradioUI | |
# Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that does nothing yet | |
Args: | |
arg1: the first argument | |
arg2: the second argument | |
""" | |
return "What magic will you build ?" | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
def summarize_text_tool(text:str)-> str: | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that summarizes the specified text | |
Args: | |
text: the text to be summaried | |
""" | |
try: | |
hf_token = os.getenv('hf_token') | |
client = InferenceClient(api_key=hf_token) | |
messages = [ | |
{ | |
"role": "user", | |
"content": f"Your are an experienced editor. Your are very skilled in summarizing texts and creating prompts from the content for LLM's to generate and image. Summarize the following text and create a prompt for an image generation: {text}" | |
} | |
] | |
response = client.chat.completions.create( | |
model="Qwen/Qwen2.5-Coder-32B-Instruct", | |
messages=messages, | |
max_tokens=500 | |
) | |
summarized_text = response.choices[0].message.content | |
return summarized_text | |
except Exception as e: | |
return f"OH noes, something went wrong...:-/ {str(e)}" | |
def helper_text_tool(text:str)-> str: | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that helps analyze a text including following web links | |
Args: | |
text: the text to be analyzed | |
""" | |
try: | |
hf_token = os.getenv('hf_token') | |
client = InferenceClient(api_key=hf_token) | |
messages = [ | |
{ | |
"role": "user", | |
"content": f"Your are an experienced requirements, tasks and process analyzer. Your are very skilled in analyzing and summarizing texts and creating prompts from the content for LLM's to generate solutions. Summarize the following text and give a meaningful answer to the question or questions: {text}" | |
} | |
] | |
response = client.chat.completions.create( | |
model="Qwen/Qwen2.5-Coder-32B-Instruct", | |
messages=messages, | |
max_tokens=500 | |
) | |
summarized_text = response.choices[0].message.content | |
return summarized_text | |
except Exception as e: | |
return f"OH noes, something went wrong...:-/ {str(e)}" | |
final_answer = FinalAnswerTool() | |
visit_webpage = VisitWebpageTool() | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer, image_generation_tool, visit_webpage, summarize_text_tool, helper_text_tool], ## add your tools here (don't remove final answer) | |
max_steps=10, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() |