import streamlit as st import time # For measuring time taken from sql_query_generator.config import Instructions from sql_query_generator.utils import load_json, format_prompt from sql_query_generator.generator import load_model, generate_sql # Load Schema and Metadata try: schema = load_json("data/table_create.json") metadata = load_json("data/tables_metadata.json") except FileNotFoundError: st.error("Schema or metadata files not found. Please ensure they are in the `data/` directory.") st.stop() # Load model and tokenizer tokenizer, model = load_model() # Streamlit Interface st.title("Dynamic SQL Query Generator") st.markdown("Enter your query below to generate a SQL query based on the provided schema and metadata.") # Sidebar with st.sidebar: # st.header("Options") # use_gpu = st.checkbox("Use GPU (if available)", value=False) device = "cpu" st.header("Example Queries") st.write("- Get fire budget for Ada county for the year 2023") st.write("- Retrieve population count for all cities") # Main Input question = st.text_input("Enter your query:") if question: st.write("Generating SQL for the query...") start_time = time.time() # Start measuring time # Format prompt formatted_prompt = format_prompt(question, schema, metadata, Instructions) prompt_inputs = { "formatted_prompt": formatted_prompt, "schema": schema, "metadata": metadata, "instructions": Instructions, } # Generate SQL Query sql_query = generate_sql(question, prompt_inputs, tokenizer, model, device=device) end_time = time.time() # End measuring time # Display Results st.subheader("Generated SQL Query:") st.code(sql_query, language="sql") # Show time taken time_taken = end_time - start_time st.subheader("Time Taken:") st.write(f"{time_taken:.2f} seconds")