from transformers import AutoTokenizer, AutoModelForCausalLM def load_model(model_name="chatdb/natural-sql-7b"): """ Loads the model on CPU and avoids bitsandbytes. """ tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", # Auto-map to CPU offload_folder="offload", # Offload to disk low_cpu_mem_usage=True, # Optimize CPU memory usage ) return tokenizer, model def generate_sql(question, prompt_inputs, tokenizer, model, device="cpu"): """ Generates an SQL query based on the question and schema. """ prompt = prompt_inputs["formatted_prompt"] inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate( **inputs, max_new_tokens=128, ) return tokenizer.decode(outputs[0], skip_special_tokens=True)