diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..2a8119e3821d730eb90264a392710763e6c3cbcf
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,48 @@
+weights/blue-archive/alice/added_IVF141_Flat_nprobe_4.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/alice/alice.pth filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/Arona/added_IVF146_Flat_nprobe_1_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/Arona/Arona.pth filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/NoaBlueArchive/added_IVF175_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/NoaBlueArchive/NoaBlueArchive2333333.pth filter=lfs diff=lfs merge=lfs -text
+hubert_base.pt filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/NoaBlueArchive/NoaBlueArchive.pth filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/IgusaHaruka/added_IVF365_Flat_nprobe_1_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/IgusaHaruka/IgusaHaruka.pth filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/AjitaniHifumi/added_IVF602_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/AjitaniHifumi/AjitaniHifumi.pth filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/SorasakiHina/added_IVF277_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/SorasakiHina/SorasakiHina.pth filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/KirifujiNagisa/added_IVF229_Flat_nprobe_1_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/KirifujiNagisa/KirifujiNagisa.pth filter=lfs diff=lfs merge=lfs -text
+IgusaHaruka/added_IVF365_Flat_nprobe_1_v1.index filter=lfs diff=lfs merge=lfs -text
+IgusaHaruka/IgusaHaruka.pth filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/SunoharaKokona/added_IVF217_Flat_nprobe_1_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/SunoharaKokona/SunoharaKokona.pth filter=lfs diff=lfs merge=lfs -text
+weights/Oshi[[:space:]]No[[:space:]]Ko/AiHoshino/added_IVF510_Flat_nprobe_1_v2.index filter=lfs diff=lfs merge=lfs -text
+weights/Oshi[[:space:]]No[[:space:]]Ko/AiHoshino/AiHoshino.pth filter=lfs diff=lfs merge=lfs -text
+weights/Oshi[[:space:]]No[[:space:]]Ko/AiHoshino/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/Oshi[[:space:]]No[[:space:]]Ko/RubyHoshino/added_IVF525_Flat_nprobe_1_ruby_v2.index filter=lfs diff=lfs merge=lfs -text
+weights/Oshi[[:space:]]No[[:space:]]Ko/RubyHoshino/RubyHoshino.pth filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Ayaka/added_IVF823_Flat_nprobe_1.index filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Ayaka/Ayaka.pth filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/HayaseYuuka/added_IVF336_Flat_nprobe_1_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/HayaseYuuka/HayaseYuuka.pth filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/JomaeSaori/added_IVF330_Flat_nprobe_1_JomaeSaori_v2.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/JomaeSaori/JomaeSaori.pth filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/yao-yao/added_IVF514_Flat_nprobe_1_yao-yao_v2.index filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/yao-yao/yao-yao.pth filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Rukhadevata/added_IVF588_Flat_nprobe_1_greaterLordRukkhadevata-jp_v2.index filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Rukhadevata/rukkhadevata-jp.pth filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/TendouAlice/added_IVF152_Flat_nprobe_1_v1.index filter=lfs diff=lfs merge=lfs -text
+weights/blue-archive/TendouAlice/TendouAlice.pth filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing-[[:space:]]300[[:space:]]epoch/added_IVF1016_Flat_nprobe_1_v2.index filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing-[[:space:]]300[[:space:]]epoch/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing-[[:space:]]300[[:space:]]epoch/keqing-RVC2_e300.pth filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing-[[:space:]]300[[:space:]]epoch/total_fea.npy filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing-[[:space:]]300[[:space:]]epoch/Keqing-[[:space:]]300[[:space:]]epoch filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing/Keqing-[[:space:]]300[[:space:]]epoch filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing/added_IVF1016_Flat_nprobe_1_v2.index filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing/cover.png filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing/Keqing-300epoch filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing/Keqing filter=lfs diff=lfs merge=lfs -text
+weights/Genshin[[:space:]]Impact/Keqing/Keqing.pth filter=lfs diff=lfs merge=lfs -text
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..4805f8f7595d5c34c6ef35196266a08c5ddd1b47
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,384 @@
+## Ignore Visual Studio temporary files, build results, and
+## files generated by popular Visual Studio add-ons.
+##
+## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
+
+# User-specific files
+*.rsuser
+*.suo
+*.user
+*.userosscache
+*.sln.docstates
+
+# User-specific files (MonoDevelop/Xamarin Studio)
+*.userprefs
+
+# Mono auto generated files
+mono_crash.*
+
+# Build results
+[Dd]ebug/
+[Dd]ebugPublic/
+[Rr]elease/
+[Rr]eleases/
+x64/
+x86/
+[Ww][Ii][Nn]32/
+[Aa][Rr][Mm]/
+[Aa][Rr][Mm]64/
+bld/
+[Bb]in/
+[Oo]bj/
+[Oo]ut/
+[Ll]og/
+[Ll]ogs/
+infer_pack\__pycache__
+# Visual Studio 2015/2017 cache/options directory
+.vs/
+# Uncomment if you have tasks that create the project's static files in wwwroot
+#wwwroot/
+
+# Visual Studio 2017 auto generated files
+Generated\ Files/
+
+# MSTest test Results
+[Tt]est[Rr]esult*/
+[Bb]uild[Ll]og.*
+
+# NUnit
+*.VisualState.xml
+TestResult.xml
+nunit-*.xml
+
+# Build Results of an ATL Project
+[Dd]ebugPS/
+[Rr]eleasePS/
+dlldata.c
+
+# Benchmark Results
+BenchmarkDotNet.Artifacts/
+
+# .NET Core
+project.lock.json
+project.fragment.lock.json
+artifacts/
+
+# ASP.NET Scaffolding
+ScaffoldingReadMe.txt
+
+# StyleCop
+StyleCopReport.xml
+
+# Files built by Visual Studio
+*_i.c
+*_p.c
+*_h.h
+*.ilk
+*.meta
+*.obj
+*.iobj
+*.pch
+*.pdb
+*.ipdb
+*.pgc
+*.pgd
+*.rsp
+*.sbr
+*.tlb
+*.tli
+*.tlh
+*.tmp
+*.tmp_proj
+*_wpftmp.csproj
+*.log
+*.vspscc
+*.vssscc
+.builds
+*.pidb
+*.svclog
+*.scc
+
+# Chutzpah Test files
+_Chutzpah*
+
+# Visual C++ cache files
+ipch/
+*.aps
+*.ncb
+*.opendb
+*.opensdf
+*.sdf
+*.cachefile
+*.VC.db
+*.VC.VC.opendb
+
+# Visual Studio profiler
+*.psess
+*.vsp
+*.vspx
+*.sap
+
+# Visual Studio Trace Files
+*.e2e
+
+# TFS 2012 Local Workspace
+$tf/
+
+# Guidance Automation Toolkit
+*.gpState
+
+# ReSharper is a .NET coding add-in
+_ReSharper*/
+*.[Rr]e[Ss]harper
+*.DotSettings.user
+
+# TeamCity is a build add-in
+_TeamCity*
+
+# DotCover is a Code Coverage Tool
+*.dotCover
+
+# AxoCover is a Code Coverage Tool
+.axoCover/*
+!.axoCover/settings.json
+
+# Coverlet is a free, cross platform Code Coverage Tool
+coverage*.json
+coverage*.xml
+coverage*.info
+
+# Visual Studio code coverage results
+*.coverage
+*.coveragexml
+
+# NCrunch
+_NCrunch_*
+.*crunch*.local.xml
+nCrunchTemp_*
+
+# MightyMoose
+*.mm.*
+AutoTest.Net/
+
+# Web workbench (sass)
+.sass-cache/
+
+# Installshield output folder
+[Ee]xpress/
+
+# DocProject is a documentation generator add-in
+DocProject/buildhelp/
+DocProject/Help/*.HxT
+DocProject/Help/*.HxC
+DocProject/Help/*.hhc
+DocProject/Help/*.hhk
+DocProject/Help/*.hhp
+DocProject/Help/Html2
+DocProject/Help/html
+
+# Click-Once directory
+publish/
+
+# Publish Web Output
+*.[Pp]ublish.xml
+*.azurePubxml
+# Note: Comment the next line if you want to checkin your web deploy settings,
+# but database connection strings (with potential passwords) will be unencrypted
+*.pubxml
+*.publishproj
+
+# Microsoft Azure Web App publish settings. Comment the next line if you want to
+# checkin your Azure Web App publish settings, but sensitive information contained
+# in these scripts will be unencrypted
+PublishScripts/
+
+# NuGet Packages
+*.nupkg
+# NuGet Symbol Packages
+*.snupkg
+# The packages folder can be ignored because of Package Restore
+**/[Pp]ackages/*
+# except build/, which is used as an MSBuild target.
+!**/[Pp]ackages/build/
+# Uncomment if necessary however generally it will be regenerated when needed
+#!**/[Pp]ackages/repositories.config
+# NuGet v3's project.json files produces more ignorable files
+*.nuget.props
+*.nuget.targets
+
+# Microsoft Azure Build Output
+csx/
+*.build.csdef
+
+# Microsoft Azure Emulator
+ecf/
+rcf/
+
+# Windows Store app package directories and files
+AppPackages/
+BundleArtifacts/
+Package.StoreAssociation.xml
+_pkginfo.txt
+*.appx
+*.appxbundle
+*.appxupload
+
+# Visual Studio cache files
+# files ending in .cache can be ignored
+*.[Cc]ache
+# but keep track of directories ending in .cache
+!?*.[Cc]ache/
+
+# Others
+ClientBin/
+~$*
+*~
+*.dbmdl
+*.dbproj.schemaview
+*.jfm
+*.pfx
+*.publishsettings
+orleans.codegen.cs
+
+# Including strong name files can present a security risk
+# (https://github.com/github/gitignore/pull/2483#issue-259490424)
+#*.snk
+
+# Since there are multiple workflows, uncomment next line to ignore bower_components
+# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
+#bower_components/
+
+# RIA/Silverlight projects
+Generated_Code/
+
+# Backup & report files from converting an old project file
+# to a newer Visual Studio version. Backup files are not needed,
+# because we have git ;-)
+_UpgradeReport_Files/
+Backup*/
+UpgradeLog*.XML
+UpgradeLog*.htm
+ServiceFabricBackup/
+*.rptproj.bak
+
+# SQL Server files
+*.mdf
+*.ldf
+*.ndf
+
+# Business Intelligence projects
+*.rdl.data
+*.bim.layout
+*.bim_*.settings
+*.rptproj.rsuser
+*- [Bb]ackup.rdl
+*- [Bb]ackup ([0-9]).rdl
+*- [Bb]ackup ([0-9][0-9]).rdl
+
+# Microsoft Fakes
+FakesAssemblies/
+
+# GhostDoc plugin setting file
+*.GhostDoc.xml
+
+# Node.js Tools for Visual Studio
+.ntvs_analysis.dat
+node_modules/
+
+# Visual Studio 6 build log
+*.plg
+
+# Visual Studio 6 workspace options file
+*.opt
+
+# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
+*.vbw
+
+# Visual Studio LightSwitch build output
+**/*.HTMLClient/GeneratedArtifacts
+**/*.DesktopClient/GeneratedArtifacts
+**/*.DesktopClient/ModelManifest.xml
+**/*.Server/GeneratedArtifacts
+**/*.Server/ModelManifest.xml
+_Pvt_Extensions
+
+# Paket dependency manager
+.paket/paket.exe
+paket-files/
+
+# FAKE - F# Make
+.fake/
+
+# CodeRush personal settings
+.cr/personal
+
+# Python Tools for Visual Studio (PTVS)
+__pycache__/
+
+
+# Cake - Uncomment if you are using it
+# tools/**
+# !tools/packages.config
+
+# Tabs Studio
+*.tss
+
+# Telerik's JustMock configuration file
+*.jmconfig
+
+# BizTalk build output
+*.btp.cs
+*.btm.cs
+*.odx.cs
+*.xsd.cs
+
+# OpenCover UI analysis results
+OpenCover/
+
+# Azure Stream Analytics local run output
+ASALocalRun/
+
+# MSBuild Binary and Structured Log
+*.binlog
+
+# NVidia Nsight GPU debugger configuration file
+*.nvuser
+
+# MFractors (Xamarin productivity tool) working folder
+.mfractor/
+
+# Local History for Visual Studio
+.localhistory/
+
+# BeatPulse healthcheck temp database
+healthchecksdb
+
+# Backup folder for Package Reference Convert tool in Visual Studio 2017
+MigrationBackup/
+
+# Ionide (cross platform F# VS Code tools) working folder
+.ionide/
+
+# Fody - auto-generated XML schema
+FodyWeavers.xsd
+
+# build
+build
+monotonic_align/core.c
+*.o
+*.so
+*.dll
+
+# data
+/config.json
+/*.pth
+*.wav
+/monotonic_align/monotonic_align
+/resources
+/MoeGoe.spec
+/dist/MoeGoe
+/dist
+
+.idea
+infer-web.py
+app-old.py
\ No newline at end of file
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..01be85be14f159e517b379d9f8ea31b068fbd043
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2023 arkandash
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..5243511755780e0a6ab8ce5e55538be791529369
--- /dev/null
+++ b/README.md
@@ -0,0 +1,11 @@
+---
+title: rvc-Blue-archives
+emoji: ':🎤'
+colorFrom: red
+colorTo: purple
+sdk: gradio
+sdk_version: 3.34.0
+app_file: app.py
+license: mit
+duplicated_from: Faridmaruf/rvc-Blue-archives
+---
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..b545c33df5f8714308d872bc6cab208485e14e6b
--- /dev/null
+++ b/app.py
@@ -0,0 +1,516 @@
+import os
+import glob
+import json
+import traceback
+import logging
+import gradio as gr
+import numpy as np
+import librosa
+import torch
+import asyncio
+import edge_tts
+import yt_dlp
+import ffmpeg
+import subprocess
+import sys
+import io
+import wave
+from datetime import datetime
+from fairseq import checkpoint_utils
+from lib.infer_pack.models import (
+ SynthesizerTrnMs256NSFsid,
+ SynthesizerTrnMs256NSFsid_nono,
+ SynthesizerTrnMs768NSFsid,
+ SynthesizerTrnMs768NSFsid_nono,
+)
+from vc_infer_pipeline import VC
+from config import Config
+config = Config()
+logging.getLogger("numba").setLevel(logging.WARNING)
+limitation = os.getenv("SYSTEM") == "spaces"
+
+audio_mode = []
+f0method_mode = []
+f0method_info = ""
+if limitation is True:
+ audio_mode = ["Upload audio", "TTS Audio"]
+ f0method_mode = ["pm", "harvest"]
+ f0method_info = "PM is fast, Harvest is good but extremely slow. (Default: PM)"
+else:
+ audio_mode = ["Input path", "Upload audio", "Youtube", "TTS Audio"]
+ f0method_mode = ["pm", "harvest", "crepe"]
+ f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
+
+def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
+ def vc_fn(
+ vc_audio_mode,
+ vc_input,
+ vc_upload,
+ tts_text,
+ tts_voice,
+ f0_up_key,
+ f0_method,
+ index_rate,
+ filter_radius,
+ resample_sr,
+ rms_mix_rate,
+ protect,
+ ):
+ try:
+ print(f"Converting using {model_name}...")
+ if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
+ audio, sr = librosa.load(vc_input, sr=16000, mono=True)
+ elif vc_audio_mode == "Upload audio":
+ if vc_upload is None:
+ return "You need to upload an audio", None
+ sampling_rate, audio = vc_upload
+ duration = audio.shape[0] / sampling_rate
+ if duration > 20 and limitation:
+ return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio.transpose(1, 0))
+ if sampling_rate != 16000:
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
+ elif vc_audio_mode == "TTS Audio":
+ if len(tts_text) > 100 and limitation:
+ return "Text is too long", None
+ if tts_text is None or tts_voice is None:
+ return "You need to enter text and select a voice", None
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
+ vc_input = "tts.mp3"
+ times = [0, 0, 0]
+ f0_up_key = int(f0_up_key)
+ audio_opt = vc.pipeline(
+ hubert_model,
+ net_g,
+ 0,
+ audio,
+ vc_input,
+ times,
+ f0_up_key,
+ f0_method,
+ file_index,
+ # file_big_npy,
+ index_rate,
+ if_f0,
+ filter_radius,
+ tgt_sr,
+ resample_sr,
+ rms_mix_rate,
+ version,
+ protect,
+ f0_file=None,
+ )
+ info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
+ print(f"{model_name} | {info}")
+ return info, (tgt_sr, audio_opt)
+ except:
+ info = traceback.format_exc()
+ print(info)
+ return info, None
+ return vc_fn
+
+def load_model():
+ categories = []
+ with open("weights/folder_info.json", "r", encoding="utf-8") as f:
+ folder_info = json.load(f)
+ for category_name, category_info in folder_info.items():
+ if not category_info['enable']:
+ continue
+ category_title = category_info['title']
+ category_folder = category_info['folder_path']
+ description = category_info['description']
+ models = []
+ with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
+ models_info = json.load(f)
+ for character_name, info in models_info.items():
+ if not info['enable']:
+ continue
+ model_title = info['title']
+ model_name = info['model_path']
+ model_author = info.get("author", None)
+ model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
+ model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
+ cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
+ tgt_sr = cpt["config"][-1]
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
+ if_f0 = cpt.get("f0", 1)
+ version = cpt.get("version", "v1")
+ if version == "v1":
+ if if_f0 == 1:
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
+ else:
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
+ model_version = "V1"
+ elif version == "v2":
+ if if_f0 == 1:
+ net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
+ else:
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
+ model_version = "V2"
+ del net_g.enc_q
+ print(net_g.load_state_dict(cpt["weight"], strict=False))
+ net_g.eval().to(config.device)
+ if config.is_half:
+ net_g = net_g.half()
+ else:
+ net_g = net_g.float()
+ vc = VC(tgt_sr, config)
+ print(f"Model loaded: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
+ models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, model_index)))
+ categories.append([category_title, category_folder, description, models])
+ return categories
+
+def cut_vocal_and_inst(url, audio_provider, split_model):
+ if url != "":
+ if not os.path.exists("dl_audio"):
+ os.mkdir("dl_audio")
+ if audio_provider == "Youtube":
+ ydl_opts = {
+ 'noplaylist': True,
+ 'format': 'bestaudio/best',
+ 'postprocessors': [{
+ 'key': 'FFmpegExtractAudio',
+ 'preferredcodec': 'wav',
+ }],
+ "outtmpl": 'dl_audio/youtube_audio',
+ }
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
+ ydl.download([url])
+ audio_path = "dl_audio/youtube_audio.wav"
+ if split_model == "htdemucs":
+ command = f"demucs --two-stems=vocals {audio_path} -o output"
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ return "output/htdemucs/youtube_audio/vocals.wav", "output/htdemucs/youtube_audio/no_vocals.wav", audio_path, "output/htdemucs/youtube_audio/vocals.wav"
+ else:
+ command = f"demucs --two-stems=vocals -n mdx_extra_q {audio_path} -o output"
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ return "output/mdx_extra_q/youtube_audio/vocals.wav", "output/mdx_extra_q/youtube_audio/no_vocals.wav", audio_path, "output/mdx_extra_q/youtube_audio/vocals.wav"
+ else:
+ raise gr.Error("URL Required!")
+ return None, None, None, None
+
+def combine_vocal_and_inst(audio_data, audio_volume, split_model):
+ if not os.path.exists("output/result"):
+ os.mkdir("output/result")
+ vocal_path = "output/result/output.wav"
+ output_path = "output/result/combine.mp3"
+ if split_model == "htdemucs":
+ inst_path = "output/htdemucs/youtube_audio/no_vocals.wav"
+ else:
+ inst_path = "output/mdx_extra_q/youtube_audio/no_vocals.wav"
+ with wave.open(vocal_path, "w") as wave_file:
+ wave_file.setnchannels(1)
+ wave_file.setsampwidth(2)
+ wave_file.setframerate(audio_data[0])
+ wave_file.writeframes(audio_data[1].tobytes())
+ command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ return output_path
+
+def load_hubert():
+ global hubert_model
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
+ ["hubert_base.pt"],
+ suffix="",
+ )
+ hubert_model = models[0]
+ hubert_model = hubert_model.to(config.device)
+ if config.is_half:
+ hubert_model = hubert_model.half()
+ else:
+ hubert_model = hubert_model.float()
+ hubert_model.eval()
+
+def change_audio_mode(vc_audio_mode):
+ if vc_audio_mode == "Input path":
+ return (
+ # Input & Upload
+ gr.Textbox.update(visible=True),
+ gr.Checkbox.update(visible=False),
+ gr.Audio.update(visible=False),
+ # Youtube
+ gr.Dropdown.update(visible=False),
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False),
+ gr.Button.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Slider.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Button.update(visible=False),
+ # TTS
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False)
+ )
+ elif vc_audio_mode == "Upload audio":
+ return (
+ # Input & Upload
+ gr.Textbox.update(visible=False),
+ gr.Checkbox.update(visible=True),
+ gr.Audio.update(visible=True),
+ # Youtube
+ gr.Dropdown.update(visible=False),
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False),
+ gr.Button.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Slider.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Button.update(visible=False),
+ # TTS
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False)
+ )
+ elif vc_audio_mode == "Youtube":
+ return (
+ # Input & Upload
+ gr.Textbox.update(visible=False),
+ gr.Checkbox.update(visible=False),
+ gr.Audio.update(visible=False),
+ # Youtube
+ gr.Dropdown.update(visible=True),
+ gr.Textbox.update(visible=True),
+ gr.Dropdown.update(visible=True),
+ gr.Button.update(visible=True),
+ gr.Audio.update(visible=True),
+ gr.Audio.update(visible=True),
+ gr.Audio.update(visible=True),
+ gr.Slider.update(visible=True),
+ gr.Audio.update(visible=True),
+ gr.Button.update(visible=True),
+ # TTS
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False)
+ )
+ elif vc_audio_mode == "TTS Audio":
+ return (
+ # Input & Upload
+ gr.Textbox.update(visible=False),
+ gr.Checkbox.update(visible=False),
+ gr.Audio.update(visible=False),
+ # Youtube
+ gr.Dropdown.update(visible=False),
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False),
+ gr.Button.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Slider.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Button.update(visible=False),
+ # TTS
+ gr.Textbox.update(visible=True),
+ gr.Dropdown.update(visible=True)
+ )
+ else:
+ return (
+ # Input & Upload
+ gr.Textbox.update(visible=False),
+ gr.Checkbox.update(visible=True),
+ gr.Audio.update(visible=True),
+ # Youtube
+ gr.Dropdown.update(visible=False),
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False),
+ gr.Button.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Slider.update(visible=False),
+ gr.Audio.update(visible=False),
+ gr.Button.update(visible=False),
+ # TTS
+ gr.Textbox.update(visible=False),
+ gr.Dropdown.update(visible=False)
+ )
+
+def use_microphone(microphone):
+ if microphone == True:
+ return gr.Audio.update(source="microphone")
+ else:
+ return gr.Audio.update(source="upload")
+
+if __name__ == '__main__':
+ load_hubert()
+ categories = load_model()
+ tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
+ with gr.Blocks() as app:
+ gr.Markdown(
+ "
\n\n"+
+ "# Multi Model RVC Inference\n\n"+
+ "[](https://github.com/ArkanDash/Multi-Model-RVC-Inference)\n\n"+
+ "
"
+ )
+ for (folder_title, folder, description, models) in categories:
+ with gr.TabItem(folder_title):
+ if description:
+ gr.Markdown(f"### {description}")
+ with gr.Tabs():
+ if not models:
+ gr.Markdown("# No Model Loaded.")
+ gr.Markdown("## Please add model or fix your model path.")
+ continue
+ for (name, title, author, cover, model_version, vc_fn) in models:
+ with gr.TabItem(name):
+ with gr.Row():
+ gr.Markdown(
+ ''
+ f'
{title}
\n'+
+ f'
RVC {model_version} Model
\n'+
+ (f'
Model author: {author}
' if author else "")+
+ (f'

' if cover else "")+
+ '
'
+ )
+ with gr.Row():
+ with gr.Column():
+ vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Upload audio")
+ # Input
+ vc_input = gr.Textbox(label="Input audio path", visible=False)
+ # Upload
+ vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
+ vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
+ # Youtube
+ vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
+ vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
+ vc_split_model = gr.Dropdown(label="Splitter Model", choices=["htdemucs", "mdx_extra_q"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
+ vc_split = gr.Button("Split Audio", variant="primary", visible=False)
+ vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
+ vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
+ vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
+ # TTS
+ tts_text = gr.Textbox(visible=False, label="TTS text", info="Text to speech input")
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
+ with gr.Column():
+ vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
+ f0method0 = gr.Radio(
+ label="Pitch extraction algorithm",
+ info=f0method_info,
+ choices=f0method_mode,
+ value="pm",
+ interactive=True
+ )
+ index_rate1 = gr.Slider(
+ minimum=0,
+ maximum=1,
+ label="Retrieval feature ratio",
+ info="(Default: 0.7)",
+ value=0.7,
+ interactive=True,
+ )
+ filter_radius0 = gr.Slider(
+ minimum=0,
+ maximum=7,
+ label="Apply Median Filtering",
+ info="The value represents the filter radius and can reduce breathiness.",
+ value=3,
+ step=1,
+ interactive=True,
+ )
+ resample_sr0 = gr.Slider(
+ minimum=0,
+ maximum=48000,
+ label="Resample the output audio",
+ info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
+ value=0,
+ step=1,
+ interactive=True,
+ )
+ rms_mix_rate0 = gr.Slider(
+ minimum=0,
+ maximum=1,
+ label="Volume Envelope",
+ info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
+ value=1,
+ interactive=True,
+ )
+ protect0 = gr.Slider(
+ minimum=0,
+ maximum=0.5,
+ label="Voice Protection",
+ info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
+ value=0.5,
+ step=0.01,
+ interactive=True,
+ )
+ with gr.Column():
+ vc_log = gr.Textbox(label="Output Information", interactive=False)
+ vc_output = gr.Audio(label="Output Audio", interactive=False)
+ vc_convert = gr.Button("Convert", variant="primary")
+ vc_volume = gr.Slider(
+ minimum=0,
+ maximum=10,
+ label="Vocal volume",
+ value=4,
+ interactive=True,
+ step=1,
+ info="Adjust vocal volume (Default: 4}",
+ visible=False
+ )
+ vc_combined_output = gr.Audio(label="Output Combined Audio", visible=False)
+ vc_combine = gr.Button("Combine",variant="primary", visible=False)
+ vc_convert.click(
+ fn=vc_fn,
+ inputs=[
+ vc_audio_mode,
+ vc_input,
+ vc_upload,
+ tts_text,
+ tts_voice,
+ vc_transform0,
+ f0method0,
+ index_rate1,
+ filter_radius0,
+ resample_sr0,
+ rms_mix_rate0,
+ protect0,
+ ],
+ outputs=[vc_log ,vc_output]
+ )
+ vc_split.click(
+ fn=cut_vocal_and_inst,
+ inputs=[vc_link, vc_download_audio, vc_split_model],
+ outputs=[vc_vocal_preview, vc_inst_preview, vc_audio_preview, vc_input]
+ )
+ vc_combine.click(
+ fn=combine_vocal_and_inst,
+ inputs=[vc_output, vc_volume, vc_split_model],
+ outputs=[vc_combined_output]
+ )
+ vc_microphone_mode.change(
+ fn=use_microphone,
+ inputs=vc_microphone_mode,
+ outputs=vc_upload
+ )
+ vc_audio_mode.change(
+ fn=change_audio_mode,
+ inputs=[vc_audio_mode],
+ outputs=[
+ vc_input,
+ vc_microphone_mode,
+ vc_upload,
+ vc_download_audio,
+ vc_link,
+ vc_split_model,
+ vc_split,
+ vc_vocal_preview,
+ vc_inst_preview,
+ vc_audio_preview,
+ vc_volume,
+ vc_combined_output,
+ vc_combine,
+ tts_text,
+ tts_voice
+ ]
+ )
+ app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)
\ No newline at end of file
diff --git a/config.py b/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..2fda460b186b86923e757618c2f4f6fc0c45d8cf
--- /dev/null
+++ b/config.py
@@ -0,0 +1,117 @@
+import argparse
+import sys
+import torch
+from multiprocessing import cpu_count
+
+class Config:
+ def __init__(self):
+ self.device = "cuda:0"
+ self.is_half = True
+ self.n_cpu = 0
+ self.gpu_name = None
+ self.gpu_mem = None
+ (
+ self.python_cmd,
+ self.listen_port,
+ self.colab,
+ self.noparallel,
+ self.noautoopen,
+ self.api
+ ) = self.arg_parse()
+ self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
+
+ @staticmethod
+ def arg_parse() -> tuple:
+ exe = sys.executable or "python"
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--port", type=int, default=7865, help="Listen port")
+ parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
+ parser.add_argument("--colab", action="store_true", help="Launch in colab")
+ parser.add_argument(
+ "--noparallel", action="store_true", help="Disable parallel processing"
+ )
+ parser.add_argument(
+ "--noautoopen",
+ action="store_true",
+ help="Do not open in browser automatically",
+ )
+ parser.add_argument("--api", action="store_true", help="Launch with api")
+ cmd_opts = parser.parse_args()
+
+ cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
+
+ return (
+ cmd_opts.pycmd,
+ cmd_opts.port,
+ cmd_opts.colab,
+ cmd_opts.noparallel,
+ cmd_opts.noautoopen,
+ cmd_opts.api
+ )
+
+ # has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
+ # check `getattr` and try it for compatibility
+ @staticmethod
+ def has_mps() -> bool:
+ if not torch.backends.mps.is_available():
+ return False
+ try:
+ torch.zeros(1).to(torch.device("mps"))
+ return True
+ except Exception:
+ return False
+
+ def device_config(self) -> tuple:
+ if torch.cuda.is_available():
+ i_device = int(self.device.split(":")[-1])
+ self.gpu_name = torch.cuda.get_device_name(i_device)
+ if (
+ ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
+ or "P40" in self.gpu_name.upper()
+ or "1060" in self.gpu_name
+ or "1070" in self.gpu_name
+ or "1080" in self.gpu_name
+ ):
+ print("Found GPU", self.gpu_name, ", force to fp32")
+ self.is_half = False
+ else:
+ print("Found GPU", self.gpu_name)
+ self.gpu_mem = int(
+ torch.cuda.get_device_properties(i_device).total_memory
+ / 1024
+ / 1024
+ / 1024
+ + 0.4
+ )
+ elif self.has_mps():
+ print("No supported Nvidia GPU found, use MPS instead")
+ self.device = "mps"
+ self.is_half = False
+ else:
+ print("No supported Nvidia GPU found, use CPU instead")
+ self.device = "cpu"
+ self.is_half = False
+
+ if self.n_cpu == 0:
+ self.n_cpu = cpu_count()
+
+ if self.is_half:
+ # 6G显存配置
+ x_pad = 3
+ x_query = 10
+ x_center = 60
+ x_max = 65
+ else:
+ # 5G显存配置
+ x_pad = 1
+ x_query = 6
+ x_center = 38
+ x_max = 41
+
+ if self.gpu_mem != None and self.gpu_mem <= 4:
+ x_pad = 1
+ x_query = 5
+ x_center = 30
+ x_max = 32
+
+ return x_pad, x_query, x_center, x_max
diff --git a/hubert_base.pt b/hubert_base.pt
new file mode 100644
index 0000000000000000000000000000000000000000..72f47ab58564f01d5cc8b05c63bdf96d944551ff
--- /dev/null
+++ b/hubert_base.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
+size 189507909
diff --git a/lib/infer_pack/attentions.py b/lib/infer_pack/attentions.py
new file mode 100644
index 0000000000000000000000000000000000000000..05501be1871643f78dddbeaa529c96667031a8db
--- /dev/null
+++ b/lib/infer_pack/attentions.py
@@ -0,0 +1,417 @@
+import copy
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from lib.infer_pack import commons
+from lib.infer_pack import modules
+from lib.infer_pack.modules import LayerNorm
+
+
+class Encoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ window_size=10,
+ **kwargs
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+
+ self.drop = nn.Dropout(p_dropout)
+ self.attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels,
+ hidden_channels,
+ n_heads,
+ p_dropout=p_dropout,
+ window_size=window_size,
+ )
+ )
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask):
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.attn_layers[i](x, x, attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class Decoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ proximal_bias=False,
+ proximal_init=True,
+ **kwargs
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+
+ self.drop = nn.Dropout(p_dropout)
+ self.self_attn_layers = nn.ModuleList()
+ self.norm_layers_0 = nn.ModuleList()
+ self.encdec_attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.self_attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels,
+ hidden_channels,
+ n_heads,
+ p_dropout=p_dropout,
+ proximal_bias=proximal_bias,
+ proximal_init=proximal_init,
+ )
+ )
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
+ self.encdec_attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
+ )
+ )
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ causal=True,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask, h, h_mask):
+ """
+ x: decoder input
+ h: encoder output
+ """
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
+ device=x.device, dtype=x.dtype
+ )
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_0[i](x + y)
+
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class MultiHeadAttention(nn.Module):
+ def __init__(
+ self,
+ channels,
+ out_channels,
+ n_heads,
+ p_dropout=0.0,
+ window_size=None,
+ heads_share=True,
+ block_length=None,
+ proximal_bias=False,
+ proximal_init=False,
+ ):
+ super().__init__()
+ assert channels % n_heads == 0
+
+ self.channels = channels
+ self.out_channels = out_channels
+ self.n_heads = n_heads
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+ self.heads_share = heads_share
+ self.block_length = block_length
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+ self.attn = None
+
+ self.k_channels = channels // n_heads
+ self.conv_q = nn.Conv1d(channels, channels, 1)
+ self.conv_k = nn.Conv1d(channels, channels, 1)
+ self.conv_v = nn.Conv1d(channels, channels, 1)
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
+ self.drop = nn.Dropout(p_dropout)
+
+ if window_size is not None:
+ n_heads_rel = 1 if heads_share else n_heads
+ rel_stddev = self.k_channels**-0.5
+ self.emb_rel_k = nn.Parameter(
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
+ * rel_stddev
+ )
+ self.emb_rel_v = nn.Parameter(
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
+ * rel_stddev
+ )
+
+ nn.init.xavier_uniform_(self.conv_q.weight)
+ nn.init.xavier_uniform_(self.conv_k.weight)
+ nn.init.xavier_uniform_(self.conv_v.weight)
+ if proximal_init:
+ with torch.no_grad():
+ self.conv_k.weight.copy_(self.conv_q.weight)
+ self.conv_k.bias.copy_(self.conv_q.bias)
+
+ def forward(self, x, c, attn_mask=None):
+ q = self.conv_q(x)
+ k = self.conv_k(c)
+ v = self.conv_v(c)
+
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
+
+ x = self.conv_o(x)
+ return x
+
+ def attention(self, query, key, value, mask=None):
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
+ b, d, t_s, t_t = (*key.size(), query.size(2))
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
+ if self.window_size is not None:
+ assert (
+ t_s == t_t
+ ), "Relative attention is only available for self-attention."
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
+ rel_logits = self._matmul_with_relative_keys(
+ query / math.sqrt(self.k_channels), key_relative_embeddings
+ )
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
+ scores = scores + scores_local
+ if self.proximal_bias:
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
+ scores = scores + self._attention_bias_proximal(t_s).to(
+ device=scores.device, dtype=scores.dtype
+ )
+ if mask is not None:
+ scores = scores.masked_fill(mask == 0, -1e4)
+ if self.block_length is not None:
+ assert (
+ t_s == t_t
+ ), "Local attention is only available for self-attention."
+ block_mask = (
+ torch.ones_like(scores)
+ .triu(-self.block_length)
+ .tril(self.block_length)
+ )
+ scores = scores.masked_fill(block_mask == 0, -1e4)
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
+ p_attn = self.drop(p_attn)
+ output = torch.matmul(p_attn, value)
+ if self.window_size is not None:
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
+ value_relative_embeddings = self._get_relative_embeddings(
+ self.emb_rel_v, t_s
+ )
+ output = output + self._matmul_with_relative_values(
+ relative_weights, value_relative_embeddings
+ )
+ output = (
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
+ return output, p_attn
+
+ def _matmul_with_relative_values(self, x, y):
+ """
+ x: [b, h, l, m]
+ y: [h or 1, m, d]
+ ret: [b, h, l, d]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0))
+ return ret
+
+ def _matmul_with_relative_keys(self, x, y):
+ """
+ x: [b, h, l, d]
+ y: [h or 1, m, d]
+ ret: [b, h, l, m]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
+ return ret
+
+ def _get_relative_embeddings(self, relative_embeddings, length):
+ max_relative_position = 2 * self.window_size + 1
+ # Pad first before slice to avoid using cond ops.
+ pad_length = max(length - (self.window_size + 1), 0)
+ slice_start_position = max((self.window_size + 1) - length, 0)
+ slice_end_position = slice_start_position + 2 * length - 1
+ if pad_length > 0:
+ padded_relative_embeddings = F.pad(
+ relative_embeddings,
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
+ )
+ else:
+ padded_relative_embeddings = relative_embeddings
+ used_relative_embeddings = padded_relative_embeddings[
+ :, slice_start_position:slice_end_position
+ ]
+ return used_relative_embeddings
+
+ def _relative_position_to_absolute_position(self, x):
+ """
+ x: [b, h, l, 2*l-1]
+ ret: [b, h, l, l]
+ """
+ batch, heads, length, _ = x.size()
+ # Concat columns of pad to shift from relative to absolute indexing.
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
+
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
+ x_flat = x.view([batch, heads, length * 2 * length])
+ x_flat = F.pad(
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
+ )
+
+ # Reshape and slice out the padded elements.
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
+ :, :, :length, length - 1 :
+ ]
+ return x_final
+
+ def _absolute_position_to_relative_position(self, x):
+ """
+ x: [b, h, l, l]
+ ret: [b, h, l, 2*l-1]
+ """
+ batch, heads, length, _ = x.size()
+ # padd along column
+ x = F.pad(
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
+ )
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
+ # add 0's in the beginning that will skew the elements after reshape
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
+ return x_final
+
+ def _attention_bias_proximal(self, length):
+ """Bias for self-attention to encourage attention to close positions.
+ Args:
+ length: an integer scalar.
+ Returns:
+ a Tensor with shape [1, 1, length, length]
+ """
+ r = torch.arange(length, dtype=torch.float32)
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
+
+
+class FFN(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=0.0,
+ activation=None,
+ causal=False,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.activation = activation
+ self.causal = causal
+
+ if causal:
+ self.padding = self._causal_padding
+ else:
+ self.padding = self._same_padding
+
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
+ self.drop = nn.Dropout(p_dropout)
+
+ def forward(self, x, x_mask):
+ x = self.conv_1(self.padding(x * x_mask))
+ if self.activation == "gelu":
+ x = x * torch.sigmoid(1.702 * x)
+ else:
+ x = torch.relu(x)
+ x = self.drop(x)
+ x = self.conv_2(self.padding(x * x_mask))
+ return x * x_mask
+
+ def _causal_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = self.kernel_size - 1
+ pad_r = 0
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
+
+ def _same_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = (self.kernel_size - 1) // 2
+ pad_r = self.kernel_size // 2
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
diff --git a/lib/infer_pack/commons.py b/lib/infer_pack/commons.py
new file mode 100644
index 0000000000000000000000000000000000000000..54470986f37825b35d90d7efa7437d1c26b87215
--- /dev/null
+++ b/lib/infer_pack/commons.py
@@ -0,0 +1,166 @@
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size * dilation - dilation) / 2)
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def kl_divergence(m_p, logs_p, m_q, logs_q):
+ """KL(P||Q)"""
+ kl = (logs_q - logs_p) - 0.5
+ kl += (
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
+ )
+ return kl
+
+
+def rand_gumbel(shape):
+ """Sample from the Gumbel distribution, protect from overflows."""
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
+ return -torch.log(-torch.log(uniform_samples))
+
+
+def rand_gumbel_like(x):
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
+ return g
+
+
+def slice_segments(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, :, idx_str:idx_end]
+ return ret
+
+
+def slice_segments2(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, idx_str:idx_end]
+ return ret
+
+
+def rand_slice_segments(x, x_lengths=None, segment_size=4):
+ b, d, t = x.size()
+ if x_lengths is None:
+ x_lengths = t
+ ids_str_max = x_lengths - segment_size + 1
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
+ ret = slice_segments(x, ids_str, segment_size)
+ return ret, ids_str
+
+
+def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
+ position = torch.arange(length, dtype=torch.float)
+ num_timescales = channels // 2
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
+ num_timescales - 1
+ )
+ inv_timescales = min_timescale * torch.exp(
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
+ )
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
+ signal = signal.view(1, channels, length)
+ return signal
+
+
+def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return x + signal.to(dtype=x.dtype, device=x.device)
+
+
+def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
+
+
+def subsequent_mask(length):
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
+ return mask
+
+
+@torch.jit.script
+def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
+ n_channels_int = n_channels[0]
+ in_act = input_a + input_b
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
+ acts = t_act * s_act
+ return acts
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def shift_1d(x):
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
+ return x
+
+
+def sequence_mask(length, max_length=None):
+ if max_length is None:
+ max_length = length.max()
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
+ return x.unsqueeze(0) < length.unsqueeze(1)
+
+
+def generate_path(duration, mask):
+ """
+ duration: [b, 1, t_x]
+ mask: [b, 1, t_y, t_x]
+ """
+ device = duration.device
+
+ b, _, t_y, t_x = mask.shape
+ cum_duration = torch.cumsum(duration, -1)
+
+ cum_duration_flat = cum_duration.view(b * t_x)
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
+ path = path.view(b, t_x, t_y)
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
+ path = path.unsqueeze(1).transpose(2, 3) * mask
+ return path
+
+
+def clip_grad_value_(parameters, clip_value, norm_type=2):
+ if isinstance(parameters, torch.Tensor):
+ parameters = [parameters]
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
+ norm_type = float(norm_type)
+ if clip_value is not None:
+ clip_value = float(clip_value)
+
+ total_norm = 0
+ for p in parameters:
+ param_norm = p.grad.data.norm(norm_type)
+ total_norm += param_norm.item() ** norm_type
+ if clip_value is not None:
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
+ total_norm = total_norm ** (1.0 / norm_type)
+ return total_norm
diff --git a/lib/infer_pack/models.py b/lib/infer_pack/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..3665d03bc0514a6ed07d3372ea24717dae1e0a65
--- /dev/null
+++ b/lib/infer_pack/models.py
@@ -0,0 +1,1142 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from lib.infer_pack import modules
+from lib.infer_pack import attentions
+from lib.infer_pack import commons
+from lib.infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from lib.infer_pack.commons import init_weights
+import numpy as np
+from lib.infer_pack import commons
+
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder768(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(768, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+}
+
+
+class SynthesizerTrnMs256NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ nsff0 = nsff0[:, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec(z * x_mask, nsff0, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs768NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ nsff0 = nsff0[:, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec(z * x_mask, nsff0, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs256NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, rate=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec(z * x_mask, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs768NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, rate=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ if rate:
+ head = int(z_p.shape[2] * rate)
+ z_p = z_p[:, :, -head:]
+ x_mask = x_mask[:, :, -head:]
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec(z * x_mask, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class MultiPeriodDiscriminatorV2(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminatorV2, self).__init__()
+ # periods = [2, 3, 5, 7, 11, 17]
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/lib/infer_pack/models_dml.py b/lib/infer_pack/models_dml.py
new file mode 100644
index 0000000000000000000000000000000000000000..958d7b29259763d2fea94caf8ba7e314c4a77d05
--- /dev/null
+++ b/lib/infer_pack/models_dml.py
@@ -0,0 +1,1124 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from lib.infer_pack import modules
+from lib.infer_pack import attentions
+from lib.infer_pack import commons
+from lib.infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from lib.infer_pack.commons import init_weights
+import numpy as np
+from lib.infer_pack import commons
+
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder768(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(768, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv.float()
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+}
+
+
+class SynthesizerTrnMs256NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs768NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs256NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs768NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class MultiPeriodDiscriminatorV2(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminatorV2, self).__init__()
+ # periods = [2, 3, 5, 7, 11, 17]
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/lib/infer_pack/models_onnx.py b/lib/infer_pack/models_onnx.py
new file mode 100644
index 0000000000000000000000000000000000000000..963e67b29f828e9fdd096397952054fe77cf3d10
--- /dev/null
+++ b/lib/infer_pack/models_onnx.py
@@ -0,0 +1,819 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from lib.infer_pack import modules
+from lib.infer_pack import attentions
+from lib.infer_pack import commons
+from lib.infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from lib.infer_pack.commons import init_weights
+import numpy as np
+from lib.infer_pack import commons
+
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder768(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(768, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+}
+
+
+class SynthesizerTrnMsNSFsidM(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ version,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ if version == "v1":
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ else:
+ self.enc_p = TextEncoder768(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ self.speaker_map = None
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def construct_spkmixmap(self, n_speaker):
+ self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
+ for i in range(n_speaker):
+ self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
+ self.speaker_map = self.speaker_map.unsqueeze(0)
+
+ def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
+ if self.speaker_map is not None: # [N, S] * [S, B, 1, H]
+ g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
+ g = g * self.speaker_map # [N, S, B, 1, H]
+ g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
+ g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
+ else:
+ g = g.unsqueeze(0)
+ g = self.emb_g(g).transpose(1, 2)
+
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class MultiPeriodDiscriminatorV2(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminatorV2, self).__init__()
+ # periods = [2, 3, 5, 7, 11, 17]
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/lib/infer_pack/modules.py b/lib/infer_pack/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..c83289df7c79a4810dacd15c050148544ba0b6a9
--- /dev/null
+++ b/lib/infer_pack/modules.py
@@ -0,0 +1,522 @@
+import copy
+import math
+import numpy as np
+import scipy
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm
+
+from lib.infer_pack import commons
+from lib.infer_pack.commons import init_weights, get_padding
+from lib.infer_pack.transforms import piecewise_rational_quadratic_transform
+
+
+LRELU_SLOPE = 0.1
+
+
+class LayerNorm(nn.Module):
+ def __init__(self, channels, eps=1e-5):
+ super().__init__()
+ self.channels = channels
+ self.eps = eps
+
+ self.gamma = nn.Parameter(torch.ones(channels))
+ self.beta = nn.Parameter(torch.zeros(channels))
+
+ def forward(self, x):
+ x = x.transpose(1, -1)
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
+ return x.transpose(1, -1)
+
+
+class ConvReluNorm(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ hidden_channels,
+ out_channels,
+ kernel_size,
+ n_layers,
+ p_dropout,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.hidden_channels = hidden_channels
+ self.out_channels = out_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+ assert n_layers > 1, "Number of layers should be larger than 0."
+
+ self.conv_layers = nn.ModuleList()
+ self.norm_layers = nn.ModuleList()
+ self.conv_layers.append(
+ nn.Conv1d(
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
+ )
+ )
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
+ for _ in range(n_layers - 1):
+ self.conv_layers.append(
+ nn.Conv1d(
+ hidden_channels,
+ hidden_channels,
+ kernel_size,
+ padding=kernel_size // 2,
+ )
+ )
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask):
+ x_org = x
+ for i in range(self.n_layers):
+ x = self.conv_layers[i](x * x_mask)
+ x = self.norm_layers[i](x)
+ x = self.relu_drop(x)
+ x = x_org + self.proj(x)
+ return x * x_mask
+
+
+class DDSConv(nn.Module):
+ """
+ Dialted and Depth-Separable Convolution
+ """
+
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
+ super().__init__()
+ self.channels = channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+
+ self.drop = nn.Dropout(p_dropout)
+ self.convs_sep = nn.ModuleList()
+ self.convs_1x1 = nn.ModuleList()
+ self.norms_1 = nn.ModuleList()
+ self.norms_2 = nn.ModuleList()
+ for i in range(n_layers):
+ dilation = kernel_size**i
+ padding = (kernel_size * dilation - dilation) // 2
+ self.convs_sep.append(
+ nn.Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ groups=channels,
+ dilation=dilation,
+ padding=padding,
+ )
+ )
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
+ self.norms_1.append(LayerNorm(channels))
+ self.norms_2.append(LayerNorm(channels))
+
+ def forward(self, x, x_mask, g=None):
+ if g is not None:
+ x = x + g
+ for i in range(self.n_layers):
+ y = self.convs_sep[i](x * x_mask)
+ y = self.norms_1[i](y)
+ y = F.gelu(y)
+ y = self.convs_1x1[i](y)
+ y = self.norms_2[i](y)
+ y = F.gelu(y)
+ y = self.drop(y)
+ x = x + y
+ return x * x_mask
+
+
+class WN(torch.nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ p_dropout=0,
+ ):
+ super(WN, self).__init__()
+ assert kernel_size % 2 == 1
+ self.hidden_channels = hidden_channels
+ self.kernel_size = (kernel_size,)
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+ self.p_dropout = p_dropout
+
+ self.in_layers = torch.nn.ModuleList()
+ self.res_skip_layers = torch.nn.ModuleList()
+ self.drop = nn.Dropout(p_dropout)
+
+ if gin_channels != 0:
+ cond_layer = torch.nn.Conv1d(
+ gin_channels, 2 * hidden_channels * n_layers, 1
+ )
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
+
+ for i in range(n_layers):
+ dilation = dilation_rate**i
+ padding = int((kernel_size * dilation - dilation) / 2)
+ in_layer = torch.nn.Conv1d(
+ hidden_channels,
+ 2 * hidden_channels,
+ kernel_size,
+ dilation=dilation,
+ padding=padding,
+ )
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
+ self.in_layers.append(in_layer)
+
+ # last one is not necessary
+ if i < n_layers - 1:
+ res_skip_channels = 2 * hidden_channels
+ else:
+ res_skip_channels = hidden_channels
+
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
+ self.res_skip_layers.append(res_skip_layer)
+
+ def forward(self, x, x_mask, g=None, **kwargs):
+ output = torch.zeros_like(x)
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
+
+ if g is not None:
+ g = self.cond_layer(g)
+
+ for i in range(self.n_layers):
+ x_in = self.in_layers[i](x)
+ if g is not None:
+ cond_offset = i * 2 * self.hidden_channels
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
+ else:
+ g_l = torch.zeros_like(x_in)
+
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
+ acts = self.drop(acts)
+
+ res_skip_acts = self.res_skip_layers[i](acts)
+ if i < self.n_layers - 1:
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
+ x = (x + res_acts) * x_mask
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
+ else:
+ output = output + res_skip_acts
+ return output * x_mask
+
+ def remove_weight_norm(self):
+ if self.gin_channels != 0:
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
+ for l in self.in_layers:
+ torch.nn.utils.remove_weight_norm(l)
+ for l in self.res_skip_layers:
+ torch.nn.utils.remove_weight_norm(l)
+
+
+class ResBlock1(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
+ super(ResBlock1, self).__init__()
+ self.convs1 = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[2],
+ padding=get_padding(kernel_size, dilation[2]),
+ )
+ ),
+ ]
+ )
+ self.convs1.apply(init_weights)
+
+ self.convs2 = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ ]
+ )
+ self.convs2.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c1, c2 in zip(self.convs1, self.convs2):
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c1(xt)
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c2(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs1:
+ remove_weight_norm(l)
+ for l in self.convs2:
+ remove_weight_norm(l)
+
+
+class ResBlock2(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
+ super(ResBlock2, self).__init__()
+ self.convs = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]),
+ )
+ ),
+ ]
+ )
+ self.convs.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c in self.convs:
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs:
+ remove_weight_norm(l)
+
+
+class Log(nn.Module):
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
+ logdet = torch.sum(-y, [1, 2])
+ return y, logdet
+ else:
+ x = torch.exp(x) * x_mask
+ return x
+
+
+class Flip(nn.Module):
+ def forward(self, x, *args, reverse=False, **kwargs):
+ x = torch.flip(x, [1])
+ if not reverse:
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
+ return x, logdet
+ else:
+ return x
+
+
+class ElementwiseAffine(nn.Module):
+ def __init__(self, channels):
+ super().__init__()
+ self.channels = channels
+ self.m = nn.Parameter(torch.zeros(channels, 1))
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
+
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = self.m + torch.exp(self.logs) * x
+ y = y * x_mask
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
+ return y, logdet
+ else:
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
+ return x
+
+
+class ResidualCouplingLayer(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ p_dropout=0,
+ gin_channels=0,
+ mean_only=False,
+ ):
+ assert channels % 2 == 0, "channels should be divisible by 2"
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.half_channels = channels // 2
+ self.mean_only = mean_only
+
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
+ self.enc = WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ p_dropout=p_dropout,
+ gin_channels=gin_channels,
+ )
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
+ self.post.weight.data.zero_()
+ self.post.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
+ h = self.pre(x0) * x_mask
+ h = self.enc(h, x_mask, g=g)
+ stats = self.post(h) * x_mask
+ if not self.mean_only:
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
+ else:
+ m = stats
+ logs = torch.zeros_like(m)
+
+ if not reverse:
+ x1 = m + x1 * torch.exp(logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ logdet = torch.sum(logs, [1, 2])
+ return x, logdet
+ else:
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ return x
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class ConvFlow(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ filter_channels,
+ kernel_size,
+ n_layers,
+ num_bins=10,
+ tail_bound=5.0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.num_bins = num_bins
+ self.tail_bound = tail_bound
+ self.half_channels = in_channels // 2
+
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
+ self.proj = nn.Conv1d(
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
+ )
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
+ h = self.pre(x0)
+ h = self.convs(h, x_mask, g=g)
+ h = self.proj(h) * x_mask
+
+ b, c, t = x0.shape
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
+
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
+ self.filter_channels
+ )
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
+
+ x1, logabsdet = piecewise_rational_quadratic_transform(
+ x1,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=reverse,
+ tails="linear",
+ tail_bound=self.tail_bound,
+ )
+
+ x = torch.cat([x0, x1], 1) * x_mask
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
+ if not reverse:
+ return x, logdet
+ else:
+ return x
diff --git a/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py b/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..ee3171bcb7c4a5066560723108b56e055f18be45
--- /dev/null
+++ b/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py
@@ -0,0 +1,90 @@
+from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
+import pyworld
+import numpy as np
+
+
+class DioF0Predictor(F0Predictor):
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.sampling_rate = sampling_rate
+
+ def interpolate_f0(self, f0):
+ """
+ 对F0进行插值处理
+ """
+
+ data = np.reshape(f0, (f0.size, 1))
+
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
+ vuv_vector[data > 0.0] = 1.0
+ vuv_vector[data <= 0.0] = 0.0
+
+ ip_data = data
+
+ frame_number = data.size
+ last_value = 0.0
+ for i in range(frame_number):
+ if data[i] <= 0.0:
+ j = i + 1
+ for j in range(i + 1, frame_number):
+ if data[j] > 0.0:
+ break
+ if j < frame_number - 1:
+ if last_value > 0.0:
+ step = (data[j] - data[i - 1]) / float(j - i)
+ for k in range(i, j):
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
+ else:
+ for k in range(i, j):
+ ip_data[k] = data[j]
+ else:
+ for k in range(i, frame_number):
+ ip_data[k] = last_value
+ else:
+ ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
+ last_value = data[i]
+
+ return ip_data[:, 0], vuv_vector[:, 0]
+
+ def resize_f0(self, x, target_len):
+ source = np.array(x)
+ source[source < 0.001] = np.nan
+ target = np.interp(
+ np.arange(0, len(source) * target_len, len(source)) / target_len,
+ np.arange(0, len(source)),
+ source,
+ )
+ res = np.nan_to_num(target)
+ return res
+
+ def compute_f0(self, wav, p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0] // self.hop_length
+ f0, t = pyworld.dio(
+ wav.astype(np.double),
+ fs=self.sampling_rate,
+ f0_floor=self.f0_min,
+ f0_ceil=self.f0_max,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
+ for index, pitch in enumerate(f0):
+ f0[index] = round(pitch, 1)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
+
+ def compute_f0_uv(self, wav, p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0] // self.hop_length
+ f0, t = pyworld.dio(
+ wav.astype(np.double),
+ fs=self.sampling_rate,
+ f0_floor=self.f0_min,
+ f0_ceil=self.f0_max,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
+ for index, pitch in enumerate(f0):
+ f0[index] = round(pitch, 1)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))
diff --git a/lib/infer_pack/modules/F0Predictor/F0Predictor.py b/lib/infer_pack/modules/F0Predictor/F0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..f56e49e7f0e6eab3babf0711cae2933371b9f9cc
--- /dev/null
+++ b/lib/infer_pack/modules/F0Predictor/F0Predictor.py
@@ -0,0 +1,16 @@
+class F0Predictor(object):
+ def compute_f0(self, wav, p_len):
+ """
+ input: wav:[signal_length]
+ p_len:int
+ output: f0:[signal_length//hop_length]
+ """
+ pass
+
+ def compute_f0_uv(self, wav, p_len):
+ """
+ input: wav:[signal_length]
+ p_len:int
+ output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
+ """
+ pass
diff --git a/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py b/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..b412ba2814e114ca7bb00b6fd6ef217f63d788a3
--- /dev/null
+++ b/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py
@@ -0,0 +1,86 @@
+from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
+import pyworld
+import numpy as np
+
+
+class HarvestF0Predictor(F0Predictor):
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.sampling_rate = sampling_rate
+
+ def interpolate_f0(self, f0):
+ """
+ 对F0进行插值处理
+ """
+
+ data = np.reshape(f0, (f0.size, 1))
+
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
+ vuv_vector[data > 0.0] = 1.0
+ vuv_vector[data <= 0.0] = 0.0
+
+ ip_data = data
+
+ frame_number = data.size
+ last_value = 0.0
+ for i in range(frame_number):
+ if data[i] <= 0.0:
+ j = i + 1
+ for j in range(i + 1, frame_number):
+ if data[j] > 0.0:
+ break
+ if j < frame_number - 1:
+ if last_value > 0.0:
+ step = (data[j] - data[i - 1]) / float(j - i)
+ for k in range(i, j):
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
+ else:
+ for k in range(i, j):
+ ip_data[k] = data[j]
+ else:
+ for k in range(i, frame_number):
+ ip_data[k] = last_value
+ else:
+ ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
+ last_value = data[i]
+
+ return ip_data[:, 0], vuv_vector[:, 0]
+
+ def resize_f0(self, x, target_len):
+ source = np.array(x)
+ source[source < 0.001] = np.nan
+ target = np.interp(
+ np.arange(0, len(source) * target_len, len(source)) / target_len,
+ np.arange(0, len(source)),
+ source,
+ )
+ res = np.nan_to_num(target)
+ return res
+
+ def compute_f0(self, wav, p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0] // self.hop_length
+ f0, t = pyworld.harvest(
+ wav.astype(np.double),
+ fs=self.hop_length,
+ f0_ceil=self.f0_max,
+ f0_floor=self.f0_min,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
+
+ def compute_f0_uv(self, wav, p_len=None):
+ if p_len is None:
+ p_len = wav.shape[0] // self.hop_length
+ f0, t = pyworld.harvest(
+ wav.astype(np.double),
+ fs=self.sampling_rate,
+ f0_floor=self.f0_min,
+ f0_ceil=self.f0_max,
+ frame_period=1000 * self.hop_length / self.sampling_rate,
+ )
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
+ return self.interpolate_f0(self.resize_f0(f0, p_len))
diff --git a/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py b/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2c592527a5966e6f8e79e8c52dc5b414246dcc6
--- /dev/null
+++ b/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py
@@ -0,0 +1,97 @@
+from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
+import parselmouth
+import numpy as np
+
+
+class PMF0Predictor(F0Predictor):
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
+ self.hop_length = hop_length
+ self.f0_min = f0_min
+ self.f0_max = f0_max
+ self.sampling_rate = sampling_rate
+
+ def interpolate_f0(self, f0):
+ """
+ 对F0进行插值处理
+ """
+
+ data = np.reshape(f0, (f0.size, 1))
+
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
+ vuv_vector[data > 0.0] = 1.0
+ vuv_vector[data <= 0.0] = 0.0
+
+ ip_data = data
+
+ frame_number = data.size
+ last_value = 0.0
+ for i in range(frame_number):
+ if data[i] <= 0.0:
+ j = i + 1
+ for j in range(i + 1, frame_number):
+ if data[j] > 0.0:
+ break
+ if j < frame_number - 1:
+ if last_value > 0.0:
+ step = (data[j] - data[i - 1]) / float(j - i)
+ for k in range(i, j):
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
+ else:
+ for k in range(i, j):
+ ip_data[k] = data[j]
+ else:
+ for k in range(i, frame_number):
+ ip_data[k] = last_value
+ else:
+ ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
+ last_value = data[i]
+
+ return ip_data[:, 0], vuv_vector[:, 0]
+
+ def compute_f0(self, wav, p_len=None):
+ x = wav
+ if p_len is None:
+ p_len = x.shape[0] // self.hop_length
+ else:
+ assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
+ time_step = self.hop_length / self.sampling_rate * 1000
+ f0 = (
+ parselmouth.Sound(x, self.sampling_rate)
+ .to_pitch_ac(
+ time_step=time_step / 1000,
+ voicing_threshold=0.6,
+ pitch_floor=self.f0_min,
+ pitch_ceiling=self.f0_max,
+ )
+ .selected_array["frequency"]
+ )
+
+ pad_size = (p_len - len(f0) + 1) // 2
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
+ f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
+ f0, uv = self.interpolate_f0(f0)
+ return f0
+
+ def compute_f0_uv(self, wav, p_len=None):
+ x = wav
+ if p_len is None:
+ p_len = x.shape[0] // self.hop_length
+ else:
+ assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
+ time_step = self.hop_length / self.sampling_rate * 1000
+ f0 = (
+ parselmouth.Sound(x, self.sampling_rate)
+ .to_pitch_ac(
+ time_step=time_step / 1000,
+ voicing_threshold=0.6,
+ pitch_floor=self.f0_min,
+ pitch_ceiling=self.f0_max,
+ )
+ .selected_array["frequency"]
+ )
+
+ pad_size = (p_len - len(f0) + 1) // 2
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
+ f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
+ f0, uv = self.interpolate_f0(f0)
+ return f0, uv
diff --git a/lib/infer_pack/modules/F0Predictor/__init__.py b/lib/infer_pack/modules/F0Predictor/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lib/infer_pack/onnx_inference.py b/lib/infer_pack/onnx_inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..6517853be49e61c427cf7cd9b5ed203f6d5f367e
--- /dev/null
+++ b/lib/infer_pack/onnx_inference.py
@@ -0,0 +1,145 @@
+import onnxruntime
+import librosa
+import numpy as np
+import soundfile
+
+
+class ContentVec:
+ def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
+ print("load model(s) from {}".format(vec_path))
+ if device == "cpu" or device is None:
+ providers = ["CPUExecutionProvider"]
+ elif device == "cuda":
+ providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
+ elif device == "dml":
+ providers = ["DmlExecutionProvider"]
+ else:
+ raise RuntimeError("Unsportted Device")
+ self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
+
+ def __call__(self, wav):
+ return self.forward(wav)
+
+ def forward(self, wav):
+ feats = wav
+ if feats.ndim == 2: # double channels
+ feats = feats.mean(-1)
+ assert feats.ndim == 1, feats.ndim
+ feats = np.expand_dims(np.expand_dims(feats, 0), 0)
+ onnx_input = {self.model.get_inputs()[0].name: feats}
+ logits = self.model.run(None, onnx_input)[0]
+ return logits.transpose(0, 2, 1)
+
+
+def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
+ if f0_predictor == "pm":
+ from lib.infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor
+
+ f0_predictor_object = PMF0Predictor(
+ hop_length=hop_length, sampling_rate=sampling_rate
+ )
+ elif f0_predictor == "harvest":
+ from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import (
+ HarvestF0Predictor,
+ )
+
+ f0_predictor_object = HarvestF0Predictor(
+ hop_length=hop_length, sampling_rate=sampling_rate
+ )
+ elif f0_predictor == "dio":
+ from lib.infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor
+
+ f0_predictor_object = DioF0Predictor(
+ hop_length=hop_length, sampling_rate=sampling_rate
+ )
+ else:
+ raise Exception("Unknown f0 predictor")
+ return f0_predictor_object
+
+
+class OnnxRVC:
+ def __init__(
+ self,
+ model_path,
+ sr=40000,
+ hop_size=512,
+ vec_path="vec-768-layer-12",
+ device="cpu",
+ ):
+ vec_path = f"pretrained/{vec_path}.onnx"
+ self.vec_model = ContentVec(vec_path, device)
+ if device == "cpu" or device is None:
+ providers = ["CPUExecutionProvider"]
+ elif device == "cuda":
+ providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
+ elif device == "dml":
+ providers = ["DmlExecutionProvider"]
+ else:
+ raise RuntimeError("Unsportted Device")
+ self.model = onnxruntime.InferenceSession(model_path, providers=providers)
+ self.sampling_rate = sr
+ self.hop_size = hop_size
+
+ def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd):
+ onnx_input = {
+ self.model.get_inputs()[0].name: hubert,
+ self.model.get_inputs()[1].name: hubert_length,
+ self.model.get_inputs()[2].name: pitch,
+ self.model.get_inputs()[3].name: pitchf,
+ self.model.get_inputs()[4].name: ds,
+ self.model.get_inputs()[5].name: rnd,
+ }
+ return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
+
+ def inference(
+ self,
+ raw_path,
+ sid,
+ f0_method="dio",
+ f0_up_key=0,
+ pad_time=0.5,
+ cr_threshold=0.02,
+ ):
+ f0_min = 50
+ f0_max = 1100
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+ f0_predictor = get_f0_predictor(
+ f0_method,
+ hop_length=self.hop_size,
+ sampling_rate=self.sampling_rate,
+ threshold=cr_threshold,
+ )
+ wav, sr = librosa.load(raw_path, sr=self.sampling_rate)
+ org_length = len(wav)
+ if org_length / sr > 50.0:
+ raise RuntimeError("Reached Max Length")
+
+ wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000)
+ wav16k = wav16k
+
+ hubert = self.vec_model(wav16k)
+ hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
+ hubert_length = hubert.shape[1]
+
+ pitchf = f0_predictor.compute_f0(wav, hubert_length)
+ pitchf = pitchf * 2 ** (f0_up_key / 12)
+ pitch = pitchf.copy()
+ f0_mel = 1127 * np.log(1 + pitch / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
+ f0_mel_max - f0_mel_min
+ ) + 1
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > 255] = 255
+ pitch = np.rint(f0_mel).astype(np.int64)
+
+ pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
+ pitch = pitch.reshape(1, len(pitch))
+ ds = np.array([sid]).astype(np.int64)
+
+ rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
+ hubert_length = np.array([hubert_length]).astype(np.int64)
+
+ out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
+ out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant")
+ return out_wav[0:org_length]
diff --git a/lib/infer_pack/transforms.py b/lib/infer_pack/transforms.py
new file mode 100644
index 0000000000000000000000000000000000000000..a11f799e023864ff7082c1f49c0cc18351a13b47
--- /dev/null
+++ b/lib/infer_pack/transforms.py
@@ -0,0 +1,209 @@
+import torch
+from torch.nn import functional as F
+
+import numpy as np
+
+
+DEFAULT_MIN_BIN_WIDTH = 1e-3
+DEFAULT_MIN_BIN_HEIGHT = 1e-3
+DEFAULT_MIN_DERIVATIVE = 1e-3
+
+
+def piecewise_rational_quadratic_transform(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ tails=None,
+ tail_bound=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ if tails is None:
+ spline_fn = rational_quadratic_spline
+ spline_kwargs = {}
+ else:
+ spline_fn = unconstrained_rational_quadratic_spline
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
+
+ outputs, logabsdet = spline_fn(
+ inputs=inputs,
+ unnormalized_widths=unnormalized_widths,
+ unnormalized_heights=unnormalized_heights,
+ unnormalized_derivatives=unnormalized_derivatives,
+ inverse=inverse,
+ min_bin_width=min_bin_width,
+ min_bin_height=min_bin_height,
+ min_derivative=min_derivative,
+ **spline_kwargs
+ )
+ return outputs, logabsdet
+
+
+def searchsorted(bin_locations, inputs, eps=1e-6):
+ bin_locations[..., -1] += eps
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
+
+
+def unconstrained_rational_quadratic_spline(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ tails="linear",
+ tail_bound=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
+ outside_interval_mask = ~inside_interval_mask
+
+ outputs = torch.zeros_like(inputs)
+ logabsdet = torch.zeros_like(inputs)
+
+ if tails == "linear":
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
+ constant = np.log(np.exp(1 - min_derivative) - 1)
+ unnormalized_derivatives[..., 0] = constant
+ unnormalized_derivatives[..., -1] = constant
+
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
+ logabsdet[outside_interval_mask] = 0
+ else:
+ raise RuntimeError("{} tails are not implemented.".format(tails))
+
+ (
+ outputs[inside_interval_mask],
+ logabsdet[inside_interval_mask],
+ ) = rational_quadratic_spline(
+ inputs=inputs[inside_interval_mask],
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
+ inverse=inverse,
+ left=-tail_bound,
+ right=tail_bound,
+ bottom=-tail_bound,
+ top=tail_bound,
+ min_bin_width=min_bin_width,
+ min_bin_height=min_bin_height,
+ min_derivative=min_derivative,
+ )
+
+ return outputs, logabsdet
+
+
+def rational_quadratic_spline(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ left=0.0,
+ right=1.0,
+ bottom=0.0,
+ top=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ if torch.min(inputs) < left or torch.max(inputs) > right:
+ raise ValueError("Input to a transform is not within its domain")
+
+ num_bins = unnormalized_widths.shape[-1]
+
+ if min_bin_width * num_bins > 1.0:
+ raise ValueError("Minimal bin width too large for the number of bins")
+ if min_bin_height * num_bins > 1.0:
+ raise ValueError("Minimal bin height too large for the number of bins")
+
+ widths = F.softmax(unnormalized_widths, dim=-1)
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
+ cumwidths = torch.cumsum(widths, dim=-1)
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
+ cumwidths = (right - left) * cumwidths + left
+ cumwidths[..., 0] = left
+ cumwidths[..., -1] = right
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
+
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
+
+ heights = F.softmax(unnormalized_heights, dim=-1)
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
+ cumheights = torch.cumsum(heights, dim=-1)
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
+ cumheights = (top - bottom) * cumheights + bottom
+ cumheights[..., 0] = bottom
+ cumheights[..., -1] = top
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
+
+ if inverse:
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
+ else:
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
+
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
+
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
+ delta = heights / widths
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
+
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
+
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
+
+ if inverse:
+ a = (inputs - input_cumheights) * (
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
+ ) + input_heights * (input_delta - input_derivatives)
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
+ )
+ c = -input_delta * (inputs - input_cumheights)
+
+ discriminant = b.pow(2) - 4 * a * c
+ assert (discriminant >= 0).all()
+
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
+ outputs = root * input_bin_widths + input_cumwidths
+
+ theta_one_minus_theta = root * (1 - root)
+ denominator = input_delta + (
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
+ * theta_one_minus_theta
+ )
+ derivative_numerator = input_delta.pow(2) * (
+ input_derivatives_plus_one * root.pow(2)
+ + 2 * input_delta * theta_one_minus_theta
+ + input_derivatives * (1 - root).pow(2)
+ )
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
+
+ return outputs, -logabsdet
+ else:
+ theta = (inputs - input_cumwidths) / input_bin_widths
+ theta_one_minus_theta = theta * (1 - theta)
+
+ numerator = input_heights * (
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
+ )
+ denominator = input_delta + (
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
+ * theta_one_minus_theta
+ )
+ outputs = input_cumheights + numerator / denominator
+
+ derivative_numerator = input_delta.pow(2) * (
+ input_derivatives_plus_one * theta.pow(2)
+ + 2 * input_delta * theta_one_minus_theta
+ + input_derivatives * (1 - theta).pow(2)
+ )
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
+
+ return outputs, logabsdet
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..dff30ccbcc989d3c2cf03816acd34d1d566b741f
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,21 @@
+wheel
+setuptools
+ffmpeg
+numba==0.56.4
+numpy==1.23.5
+scipy==1.9.3
+librosa==0.9.1
+fairseq==0.12.2
+faiss-cpu==1.7.3
+gradio==3.36.1
+pyworld==0.3.2
+soundfile>=0.12.1
+praat-parselmouth>=0.4.2
+httpx==0.23.0
+tensorboard
+tensorboardX
+torchcrepe
+onnxruntime
+demucs
+edge-tts
+yt_dlp
diff --git a/vc_infer_pipeline.py b/vc_infer_pipeline.py
new file mode 100644
index 0000000000000000000000000000000000000000..82c15f59a8072e1b317fa1d750ccc1b814a6989d
--- /dev/null
+++ b/vc_infer_pipeline.py
@@ -0,0 +1,443 @@
+import numpy as np, parselmouth, torch, pdb, sys, os
+from time import time as ttime
+import torch.nn.functional as F
+import scipy.signal as signal
+import pyworld, os, traceback, faiss, librosa, torchcrepe
+from scipy import signal
+from functools import lru_cache
+
+now_dir = os.getcwd()
+sys.path.append(now_dir)
+
+bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
+
+input_audio_path2wav = {}
+
+
+@lru_cache
+def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
+ audio = input_audio_path2wav[input_audio_path]
+ f0, t = pyworld.harvest(
+ audio,
+ fs=fs,
+ f0_ceil=f0max,
+ f0_floor=f0min,
+ frame_period=frame_period,
+ )
+ f0 = pyworld.stonemask(audio, f0, t, fs)
+ return f0
+
+
+def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
+ # print(data1.max(),data2.max())
+ rms1 = librosa.feature.rms(
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
+ ) # 每半秒一个点
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
+ rms1 = torch.from_numpy(rms1)
+ rms1 = F.interpolate(
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
+ ).squeeze()
+ rms2 = torch.from_numpy(rms2)
+ rms2 = F.interpolate(
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
+ ).squeeze()
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
+ data2 *= (
+ torch.pow(rms1, torch.tensor(1 - rate))
+ * torch.pow(rms2, torch.tensor(rate - 1))
+ ).numpy()
+ return data2
+
+
+class VC(object):
+ def __init__(self, tgt_sr, config):
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
+ config.x_pad,
+ config.x_query,
+ config.x_center,
+ config.x_max,
+ config.is_half,
+ )
+ self.sr = 16000 # hubert输入采样率
+ self.window = 160 # 每帧点数
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
+ self.t_pad_tgt = tgt_sr * self.x_pad
+ self.t_pad2 = self.t_pad * 2
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
+ self.t_center = self.sr * self.x_center # 查询切点位置
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
+ self.device = config.device
+
+ def get_f0(
+ self,
+ input_audio_path,
+ x,
+ p_len,
+ f0_up_key,
+ f0_method,
+ filter_radius,
+ inp_f0=None,
+ ):
+ global input_audio_path2wav
+ time_step = self.window / self.sr * 1000
+ f0_min = 50
+ f0_max = 1100
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+ if f0_method == "pm":
+ f0 = (
+ parselmouth.Sound(x, self.sr)
+ .to_pitch_ac(
+ time_step=time_step / 1000,
+ voicing_threshold=0.6,
+ pitch_floor=f0_min,
+ pitch_ceiling=f0_max,
+ )
+ .selected_array["frequency"]
+ )
+ pad_size = (p_len - len(f0) + 1) // 2
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
+ f0 = np.pad(
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
+ )
+ elif f0_method == "harvest":
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
+ if filter_radius > 2:
+ f0 = signal.medfilt(f0, 3)
+ elif f0_method == "crepe":
+ model = "full"
+ # Pick a batch size that doesn't cause memory errors on your gpu
+ batch_size = 512
+ # Compute pitch using first gpu
+ audio = torch.tensor(np.copy(x))[None].float()
+ f0, pd = torchcrepe.predict(
+ audio,
+ self.sr,
+ self.window,
+ f0_min,
+ f0_max,
+ model,
+ batch_size=batch_size,
+ device=self.device,
+ return_periodicity=True,
+ )
+ pd = torchcrepe.filter.median(pd, 3)
+ f0 = torchcrepe.filter.mean(f0, 3)
+ f0[pd < 0.1] = 0
+ f0 = f0[0].cpu().numpy()
+ elif f0_method == "rmvpe":
+ if hasattr(self, "model_rmvpe") == False:
+ from rmvpe import RMVPE
+
+ print("loading rmvpe model")
+ self.model_rmvpe = RMVPE(
+ "rmvpe.pt", is_half=self.is_half, device=self.device
+ )
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
+ f0 *= pow(2, f0_up_key / 12)
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
+ tf0 = self.sr // self.window # 每秒f0点数
+ if inp_f0 is not None:
+ delta_t = np.round(
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
+ ).astype("int16")
+ replace_f0 = np.interp(
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
+ )
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
+ :shape
+ ]
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
+ f0bak = f0.copy()
+ f0_mel = 1127 * np.log(1 + f0 / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
+ f0_mel_max - f0_mel_min
+ ) + 1
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > 255] = 255
+ f0_coarse = np.rint(f0_mel).astype(np.int)
+ return f0_coarse, f0bak # 1-0
+
+ def vc(
+ self,
+ model,
+ net_g,
+ sid,
+ audio0,
+ pitch,
+ pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ ): # ,file_index,file_big_npy
+ feats = torch.from_numpy(audio0)
+ if self.is_half:
+ feats = feats.half()
+ else:
+ feats = feats.float()
+ if feats.dim() == 2: # double channels
+ feats = feats.mean(-1)
+ assert feats.dim() == 1, feats.dim()
+ feats = feats.view(1, -1)
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
+
+ inputs = {
+ "source": feats.to(self.device),
+ "padding_mask": padding_mask,
+ "output_layer": 9 if version == "v1" else 12,
+ }
+ t0 = ttime()
+ with torch.no_grad():
+ logits = model.extract_features(**inputs)
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
+ if protect < 0.5 and pitch != None and pitchf != None:
+ feats0 = feats.clone()
+ if (
+ isinstance(index, type(None)) == False
+ and isinstance(big_npy, type(None)) == False
+ and index_rate != 0
+ ):
+ npy = feats[0].cpu().numpy()
+ if self.is_half:
+ npy = npy.astype("float32")
+
+ # _, I = index.search(npy, 1)
+ # npy = big_npy[I.squeeze()]
+
+ score, ix = index.search(npy, k=8)
+ weight = np.square(1 / score)
+ weight /= weight.sum(axis=1, keepdims=True)
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
+
+ if self.is_half:
+ npy = npy.astype("float16")
+ feats = (
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ + (1 - index_rate) * feats
+ )
+
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
+ if protect < 0.5 and pitch != None and pitchf != None:
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
+ 0, 2, 1
+ )
+ t1 = ttime()
+ p_len = audio0.shape[0] // self.window
+ if feats.shape[1] < p_len:
+ p_len = feats.shape[1]
+ if pitch != None and pitchf != None:
+ pitch = pitch[:, :p_len]
+ pitchf = pitchf[:, :p_len]
+
+ if protect < 0.5 and pitch != None and pitchf != None:
+ pitchff = pitchf.clone()
+ pitchff[pitchf > 0] = 1
+ pitchff[pitchf < 1] = protect
+ pitchff = pitchff.unsqueeze(-1)
+ feats = feats * pitchff + feats0 * (1 - pitchff)
+ feats = feats.to(feats0.dtype)
+ p_len = torch.tensor([p_len], device=self.device).long()
+ with torch.no_grad():
+ if pitch != None and pitchf != None:
+ audio1 = (
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
+ .data.cpu()
+ .float()
+ .numpy()
+ )
+ else:
+ audio1 = (
+ (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
+ )
+ del feats, p_len, padding_mask
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ t2 = ttime()
+ times[0] += t1 - t0
+ times[2] += t2 - t1
+ return audio1
+
+ def pipeline(
+ self,
+ model,
+ net_g,
+ sid,
+ audio,
+ input_audio_path,
+ times,
+ f0_up_key,
+ f0_method,
+ file_index,
+ # file_big_npy,
+ index_rate,
+ if_f0,
+ filter_radius,
+ tgt_sr,
+ resample_sr,
+ rms_mix_rate,
+ version,
+ protect,
+ f0_file=None,
+ ):
+ if (
+ file_index != ""
+ # and file_big_npy != ""
+ # and os.path.exists(file_big_npy) == True
+ and os.path.exists(file_index) == True
+ and index_rate != 0
+ ):
+ try:
+ index = faiss.read_index(file_index)
+ # big_npy = np.load(file_big_npy)
+ big_npy = index.reconstruct_n(0, index.ntotal)
+ except:
+ traceback.print_exc()
+ index = big_npy = None
+ else:
+ index = big_npy = None
+ audio = signal.filtfilt(bh, ah, audio)
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
+ opt_ts = []
+ if audio_pad.shape[0] > self.t_max:
+ audio_sum = np.zeros_like(audio)
+ for i in range(self.window):
+ audio_sum += audio_pad[i : i - self.window]
+ for t in range(self.t_center, audio.shape[0], self.t_center):
+ opt_ts.append(
+ t
+ - self.t_query
+ + np.where(
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
+ )[0][0]
+ )
+ s = 0
+ audio_opt = []
+ t = None
+ t1 = ttime()
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
+ p_len = audio_pad.shape[0] // self.window
+ inp_f0 = None
+ if hasattr(f0_file, "name") == True:
+ try:
+ with open(f0_file.name, "r") as f:
+ lines = f.read().strip("\n").split("\n")
+ inp_f0 = []
+ for line in lines:
+ inp_f0.append([float(i) for i in line.split(",")])
+ inp_f0 = np.array(inp_f0, dtype="float32")
+ except:
+ traceback.print_exc()
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
+ pitch, pitchf = None, None
+ if if_f0 == 1:
+ pitch, pitchf = self.get_f0(
+ input_audio_path,
+ audio_pad,
+ p_len,
+ f0_up_key,
+ f0_method,
+ filter_radius,
+ inp_f0,
+ )
+ pitch = pitch[:p_len]
+ pitchf = pitchf[:p_len]
+ if self.device == "mps":
+ pitchf = pitchf.astype(np.float32)
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
+ t2 = ttime()
+ times[1] += t2 - t1
+ for t in opt_ts:
+ t = t // self.window * self.window
+ if if_f0 == 1:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[s : t + self.t_pad2 + self.window],
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[s : t + self.t_pad2 + self.window],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ s = t
+ if if_f0 == 1:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ pitch[:, t // self.window :] if t is not None else pitch,
+ pitchf[:, t // self.window :] if t is not None else pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ version,
+ protect,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ audio_opt = np.concatenate(audio_opt)
+ if rms_mix_rate != 1:
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
+ audio_opt = librosa.resample(
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
+ )
+ audio_max = np.abs(audio_opt).max() / 0.99
+ max_int16 = 32768
+ if audio_max > 1:
+ max_int16 /= audio_max
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
+ del pitch, pitchf, sid
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ return audio_opt
diff --git a/weights/Genshin Impact/Ayaka/Ayaka.pth b/weights/Genshin Impact/Ayaka/Ayaka.pth
new file mode 100644
index 0000000000000000000000000000000000000000..5e1de715850ef2529cb94f0d64c021cc6461f360
--- /dev/null
+++ b/weights/Genshin Impact/Ayaka/Ayaka.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e6e8f22eb54166ad245b3f6dba497a3903f4c406f2a946bab2148ee3c05c23af
+size 54996633
diff --git a/weights/Genshin Impact/Ayaka/added_IVF823_Flat_nprobe_1.index b/weights/Genshin Impact/Ayaka/added_IVF823_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..8e5efda3245768367657a56f6c833c7c07749da6
--- /dev/null
+++ b/weights/Genshin Impact/Ayaka/added_IVF823_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d34d21ac7be86ac551ee785c8b99d25ba07ccaa8c856124ff3ca352d84cfc66d
+size 33989059
diff --git a/weights/Genshin Impact/Ayaka/cover.png b/weights/Genshin Impact/Ayaka/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..19db7c97385452fdefdbe2ba6fabd04c9d9ef101
Binary files /dev/null and b/weights/Genshin Impact/Ayaka/cover.png differ
diff --git a/weights/Genshin Impact/Keqing/Keqing.pth b/weights/Genshin Impact/Keqing/Keqing.pth
new file mode 100644
index 0000000000000000000000000000000000000000..db58e041443ff106bb819a745b64e8aed93dc650
--- /dev/null
+++ b/weights/Genshin Impact/Keqing/Keqing.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:11505523c2d7785f51fd32f3162bba5f3768a99698e7d1202692dcff14364251
+size 55227410
diff --git a/weights/Genshin Impact/Keqing/added_IVF1016_Flat_nprobe_1_v2.index b/weights/Genshin Impact/Keqing/added_IVF1016_Flat_nprobe_1_v2.index
new file mode 100644
index 0000000000000000000000000000000000000000..37548eab4c64ec89d6cb33d6189e5eea687c1124
--- /dev/null
+++ b/weights/Genshin Impact/Keqing/added_IVF1016_Flat_nprobe_1_v2.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:39c48172019d4c7a7b3ebfaf634071a1312c7b5094b53121325f7465de28ca99
+size 125214459
diff --git a/weights/Genshin Impact/Keqing/cover.png b/weights/Genshin Impact/Keqing/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..ee9b6c00a99133c495c0fb7d3b9c263b189330b2
--- /dev/null
+++ b/weights/Genshin Impact/Keqing/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:92915521649bc957ac05a58f1dde3b799adc930f01092a4ea88264b08c6c59b5
+size 1320788
diff --git a/weights/Genshin Impact/Rukhadevata/added_IVF588_Flat_nprobe_1_greaterLordRukkhadevata-jp_v2.index b/weights/Genshin Impact/Rukhadevata/added_IVF588_Flat_nprobe_1_greaterLordRukkhadevata-jp_v2.index
new file mode 100644
index 0000000000000000000000000000000000000000..2834f8a2d063ac83644c36c8774833a498b5c4b2
--- /dev/null
+++ b/weights/Genshin Impact/Rukhadevata/added_IVF588_Flat_nprobe_1_greaterLordRukkhadevata-jp_v2.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8cd2a06a5d4ada01eb858df487ae43d11043e56f33b20566f87a86e8df4ecf67
+size 72466379
diff --git a/weights/Genshin Impact/Rukhadevata/cover.png b/weights/Genshin Impact/Rukhadevata/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..cd5985bfc38dd6704f59a75a9c2cbf979b56a06c
Binary files /dev/null and b/weights/Genshin Impact/Rukhadevata/cover.png differ
diff --git a/weights/Genshin Impact/Rukhadevata/rukkhadevata-jp.pth b/weights/Genshin Impact/Rukhadevata/rukkhadevata-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..50034098efc807775751072a1f3f6badd12dae11
--- /dev/null
+++ b/weights/Genshin Impact/Rukhadevata/rukkhadevata-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:786d52e3244e750de4cb3e28f78042a5156a6907087eda7395d03d973eb66716
+size 57596932
diff --git a/weights/Genshin Impact/model_info.json b/weights/Genshin Impact/model_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..9e0c64345ee8b5376e64dce9d2f3aeeacd48d4c0
--- /dev/null
+++ b/weights/Genshin Impact/model_info.json
@@ -0,0 +1,26 @@
+{
+ "Ayaka": {
+ "enable": true,
+ "model_path": "Ayaka.pth",
+ "title": "Genshin Impact - Ayaka",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF823_Flat_nprobe_1.index",
+ "author": "by mocci24"
+ },
+ "Keqing": {
+ "enable": true,
+ "model_path": "Keqing.pth",
+ "title": "Genshin Impact - Keqing",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1016_Flat_nprobe_1_v2.index",
+ "author": "by BigSoulja"
+ },
+ "Rukhadevata": {
+ "enable": true,
+ "model_path": "rukkhadevata-jp.pth",
+ "title": "Genshin Impact - Rukhadevata",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF588_Flat_nprobe_1_greaterLordRukkhadevata-jp_v2.index",
+ "author": "by Arkandash"
+ }
+}
\ No newline at end of file
diff --git a/weights/Oshi No Ko/AiHoshino/AiHoshino.pth b/weights/Oshi No Ko/AiHoshino/AiHoshino.pth
new file mode 100644
index 0000000000000000000000000000000000000000..9829cc540fd763b2821acc07a26867bdf6322b8b
--- /dev/null
+++ b/weights/Oshi No Ko/AiHoshino/AiHoshino.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:31d8322988e5abf5d62eb16d7aa7ba38157ec4e217a0eba64eb6bdb3979595ba
+size 55224197
diff --git a/weights/Oshi No Ko/AiHoshino/added_IVF510_Flat_nprobe_1_v2.index b/weights/Oshi No Ko/AiHoshino/added_IVF510_Flat_nprobe_1_v2.index
new file mode 100644
index 0000000000000000000000000000000000000000..9e0758739c89cc0542486fb8354321e2b597e14f
--- /dev/null
+++ b/weights/Oshi No Ko/AiHoshino/added_IVF510_Flat_nprobe_1_v2.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e6b6ba54f94a0bf468a2b92a0a6def10676c2874f7e31de6b13659780caf90d2
+size 62906059
diff --git a/weights/Oshi No Ko/AiHoshino/cover.png b/weights/Oshi No Ko/AiHoshino/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..97b064ef41b6a891e141775e4489606e1536f99a
--- /dev/null
+++ b/weights/Oshi No Ko/AiHoshino/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0bcdf2a2e0a52c0108fb21ff7ac9a125580bb7a0e9b695d7c9858caae2715415
+size 1008704
diff --git a/weights/Oshi No Ko/RubyHoshino/RubyHoshino.pth b/weights/Oshi No Ko/RubyHoshino/RubyHoshino.pth
new file mode 100644
index 0000000000000000000000000000000000000000..ef310900f614546c390bf8f12dec5e3c017b5783
--- /dev/null
+++ b/weights/Oshi No Ko/RubyHoshino/RubyHoshino.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6dab29b7b191f89d6664ac61076eec883fb405cc8cf31d01a6563a64100ba528
+size 57586706
diff --git a/weights/Oshi No Ko/RubyHoshino/added_IVF525_Flat_nprobe_1_ruby_v2.index b/weights/Oshi No Ko/RubyHoshino/added_IVF525_Flat_nprobe_1_ruby_v2.index
new file mode 100644
index 0000000000000000000000000000000000000000..1ceeb964ffebb21fedf2a60ce4784983687aee5e
--- /dev/null
+++ b/weights/Oshi No Ko/RubyHoshino/added_IVF525_Flat_nprobe_1_ruby_v2.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c5a4daebbf6a999402b5de0cef5b8eeaaefddda7b1f776e7799eea9fe7613318
+size 64787939
diff --git a/weights/Oshi No Ko/RubyHoshino/cover.png b/weights/Oshi No Ko/RubyHoshino/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..e2c818e06c318a6f5bed2017869b32494b401bd0
Binary files /dev/null and b/weights/Oshi No Ko/RubyHoshino/cover.png differ
diff --git a/weights/Oshi No Ko/model_info.json b/weights/Oshi No Ko/model_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..bf244828d4d871e58717f252f53e855b77d93612
--- /dev/null
+++ b/weights/Oshi No Ko/model_info.json
@@ -0,0 +1,18 @@
+{
+ "AiHoshino": {
+ "enable": true,
+ "model_path": "AiHoshino.pth",
+ "title": "Oshi No Ko - AiHoshino",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF510_Flat_nprobe_1_v2.index",
+ "author": "by KJAV"
+ },
+ "RubyHoshino": {
+ "enable": true,
+ "model_path": "RubyHoshino.pth",
+ "title": "Oshi No Ko - RubyHoshino",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF525_Flat_nprobe_1_ruby_v2.index",
+ "author": "by Sakushi"
+ }
+}
\ No newline at end of file
diff --git a/weights/blue-archive/AjitaniHifumi/AjitaniHifumi.pth b/weights/blue-archive/AjitaniHifumi/AjitaniHifumi.pth
new file mode 100644
index 0000000000000000000000000000000000000000..42099197a86d1dabc5bcc8d80229ee5d7fa0019b
--- /dev/null
+++ b/weights/blue-archive/AjitaniHifumi/AjitaniHifumi.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fecdc8a8a6613a820e616b72d992903ed5bc0c91a79e2346a366b121fae401a4
+size 55029425
diff --git a/weights/blue-archive/AjitaniHifumi/added_IVF602_Flat_nprobe_1.index b/weights/blue-archive/AjitaniHifumi/added_IVF602_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..74006013d66915b4318e4b32b5ae44269a62c1f6
--- /dev/null
+++ b/weights/blue-archive/AjitaniHifumi/added_IVF602_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a9298a12b8e2e5f537225612e429d72a3bb4b4b631e720a6677bd5f060945481
+size 24867211
diff --git a/weights/blue-archive/AjitaniHifumi/cover.png b/weights/blue-archive/AjitaniHifumi/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..74ed37354e40d8c56801563b3c966c3565a0396d
Binary files /dev/null and b/weights/blue-archive/AjitaniHifumi/cover.png differ
diff --git a/weights/blue-archive/Arona/Arona.pth b/weights/blue-archive/Arona/Arona.pth
new file mode 100644
index 0000000000000000000000000000000000000000..9baaf43f7e2124a6500626445d1cbbdb54fae51e
--- /dev/null
+++ b/weights/blue-archive/Arona/Arona.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:07b4a3810247142106a45b8773c8fee5d8e74372b89a8ae32090e3a3ebe02b23
+size 54996633
diff --git a/weights/blue-archive/Arona/added_IVF146_Flat_nprobe_1_v1.index b/weights/blue-archive/Arona/added_IVF146_Flat_nprobe_1_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..13ac77c9f1bf50621ed25a2516cf59d6165735a8
--- /dev/null
+++ b/weights/blue-archive/Arona/added_IVF146_Flat_nprobe_1_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cc3b21b4cda6f8a8363c07963d82acbca953b0d1569a1def4a2d4c5d6899c29c
+size 6048691
diff --git a/weights/blue-archive/Arona/cover.png b/weights/blue-archive/Arona/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..e5c72bb80cb0ee75e774db60cf802dc42b2b3967
Binary files /dev/null and b/weights/blue-archive/Arona/cover.png differ
diff --git a/weights/blue-archive/HayaseYuuka/HayaseYuuka.pth b/weights/blue-archive/HayaseYuuka/HayaseYuuka.pth
new file mode 100644
index 0000000000000000000000000000000000000000..6adcea5c9dab3b28d9f4db81cf8f2f4eb52177c1
--- /dev/null
+++ b/weights/blue-archive/HayaseYuuka/HayaseYuuka.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f73dcf88b460a79c2c90fd3bc4cb58f6f63de40581299a14d5d9beb3d18314db
+size 55028507
diff --git a/weights/blue-archive/HayaseYuuka/added_IVF336_Flat_nprobe_1_v1.index b/weights/blue-archive/HayaseYuuka/added_IVF336_Flat_nprobe_1_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..21c5aa476864b4f5dc8265691fce66654b382e7e
--- /dev/null
+++ b/weights/blue-archive/HayaseYuuka/added_IVF336_Flat_nprobe_1_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9aa3be68539727a1a0ffd139e008c19df83ef9e64dcb8e3a2832876441f4173a
+size 13880539
diff --git a/weights/blue-archive/HayaseYuuka/cover.png b/weights/blue-archive/HayaseYuuka/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..e9733935207ed8658ea1a9996c08468768ead04b
Binary files /dev/null and b/weights/blue-archive/HayaseYuuka/cover.png differ
diff --git a/weights/blue-archive/IgusaHaruka/IgusaHaruka.pth b/weights/blue-archive/IgusaHaruka/IgusaHaruka.pth
new file mode 100644
index 0000000000000000000000000000000000000000..089e1681252de099786687f0654915ae02ac61ca
--- /dev/null
+++ b/weights/blue-archive/IgusaHaruka/IgusaHaruka.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ca122dd72655564092a009ffb75fe2de583f5f4f66f4ddd391137541b5983c5b
+size 55028507
diff --git a/weights/blue-archive/IgusaHaruka/added_IVF365_Flat_nprobe_1_v1.index b/weights/blue-archive/IgusaHaruka/added_IVF365_Flat_nprobe_1_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..eb7def68cde32ba320f8fd8734831f5288182edd
--- /dev/null
+++ b/weights/blue-archive/IgusaHaruka/added_IVF365_Flat_nprobe_1_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e952e575d54ee64895545a626bc47d8f57e332250b0591b5cfc9401de6c5e63f
+size 15079723
diff --git a/weights/blue-archive/IgusaHaruka/cover.png b/weights/blue-archive/IgusaHaruka/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..b2bb63a72a27320ffce879d6af2aeb5aff92aa34
Binary files /dev/null and b/weights/blue-archive/IgusaHaruka/cover.png differ
diff --git a/weights/blue-archive/JomaeSaori/JomaeSaori.pth b/weights/blue-archive/JomaeSaori/JomaeSaori.pth
new file mode 100644
index 0000000000000000000000000000000000000000..39cfcc12f6dd357ed9eb1c32928d4e5fa2ea4333
--- /dev/null
+++ b/weights/blue-archive/JomaeSaori/JomaeSaori.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:68b2a7500afb327a569bd4ad2b9d12828e00947a88f2659ef692323dfe86c1aa
+size 55224656
diff --git a/weights/blue-archive/JomaeSaori/added_IVF330_Flat_nprobe_1_JomaeSaori_v2.index b/weights/blue-archive/JomaeSaori/added_IVF330_Flat_nprobe_1_JomaeSaori_v2.index
new file mode 100644
index 0000000000000000000000000000000000000000..f3f7695ae49091dc8423f97c87ae652cf992c67b
--- /dev/null
+++ b/weights/blue-archive/JomaeSaori/added_IVF330_Flat_nprobe_1_JomaeSaori_v2.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0ed0aa364e076a2818b1bcd05801be74dd49ac0b6f340e5efd3f1436d36757b4
+size 40739299
diff --git a/weights/blue-archive/JomaeSaori/cover.png b/weights/blue-archive/JomaeSaori/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..84d5c50c9fb69837ff7e71f69c099aff4b152178
Binary files /dev/null and b/weights/blue-archive/JomaeSaori/cover.png differ
diff --git a/weights/blue-archive/KirifujiNagisa/KirifujiNagisa.pth b/weights/blue-archive/KirifujiNagisa/KirifujiNagisa.pth
new file mode 100644
index 0000000000000000000000000000000000000000..9da8f68bae7a3bbe6433a30dd4cdd46e77a6ef81
--- /dev/null
+++ b/weights/blue-archive/KirifujiNagisa/KirifujiNagisa.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0be64937d1e9b5d3304257c6be50b626850adedba0ee05deb0502c0227377cb6
+size 55029884
diff --git a/weights/blue-archive/KirifujiNagisa/added_IVF229_Flat_nprobe_1_v1.index b/weights/blue-archive/KirifujiNagisa/added_IVF229_Flat_nprobe_1_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..959e845731633b957a2cef9524225a398b8baa81
--- /dev/null
+++ b/weights/blue-archive/KirifujiNagisa/added_IVF229_Flat_nprobe_1_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:75a18e76d23494e2c3a051038dec19af359f9d72ad0ab3a7832e1ae539807d53
+size 9458419
diff --git a/weights/blue-archive/KirifujiNagisa/cover.png b/weights/blue-archive/KirifujiNagisa/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..218372bed2a24c3d9916767faad080674c58c7e6
Binary files /dev/null and b/weights/blue-archive/KirifujiNagisa/cover.png differ
diff --git a/weights/blue-archive/NoaBlueArchive/NoaBlueArchive.pth b/weights/blue-archive/NoaBlueArchive/NoaBlueArchive.pth
new file mode 100644
index 0000000000000000000000000000000000000000..3540dc659fed9a02f27b8be01de58a9c585dc985
--- /dev/null
+++ b/weights/blue-archive/NoaBlueArchive/NoaBlueArchive.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e6be79ac0c9edb50c526303d1da89f74b99314595d0a2e11e42078296ecc6491
+size 55029884
diff --git a/weights/blue-archive/NoaBlueArchive/added_IVF175_Flat_nprobe_1.index b/weights/blue-archive/NoaBlueArchive/added_IVF175_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..722c4b4fb2f4ace12545d74465b4353db3325581
--- /dev/null
+++ b/weights/blue-archive/NoaBlueArchive/added_IVF175_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8a74538ce2b9ce4c01e91899ccd747520662e9480d27ce0e49210e5a233a8177
+size 7244779
diff --git a/weights/blue-archive/NoaBlueArchive/cover.png b/weights/blue-archive/NoaBlueArchive/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..86d18361d94a805212f084b0c5515e2f22408c48
Binary files /dev/null and b/weights/blue-archive/NoaBlueArchive/cover.png differ
diff --git a/weights/blue-archive/SorasakiHina/SorasakiHina.pth b/weights/blue-archive/SorasakiHina/SorasakiHina.pth
new file mode 100644
index 0000000000000000000000000000000000000000..559eab109c562a9de50e8ec54282cb4defd38c25
--- /dev/null
+++ b/weights/blue-archive/SorasakiHina/SorasakiHina.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8182b136fc07f3d7d7d3443bfdfafa5b9649281a41909a88608378cb39302dd6
+size 55028966
diff --git a/weights/blue-archive/SorasakiHina/added_IVF277_Flat_nprobe_1.index b/weights/blue-archive/SorasakiHina/added_IVF277_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..b54709bd7bcce5504cc5a35f11c8aa6aaa004521
--- /dev/null
+++ b/weights/blue-archive/SorasakiHina/added_IVF277_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c246e3899ce3d45801507a9f3ee0a6d94b37dbd9ffbb5761a8a75d2b075d851f
+size 11451211
diff --git a/weights/blue-archive/SorasakiHina/cover.png b/weights/blue-archive/SorasakiHina/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..40bda0d11f80cb829f660ef9a8d0f21454ddbee1
Binary files /dev/null and b/weights/blue-archive/SorasakiHina/cover.png differ
diff --git a/weights/blue-archive/SunoharaKokona/SunoharaKokona.pth b/weights/blue-archive/SunoharaKokona/SunoharaKokona.pth
new file mode 100644
index 0000000000000000000000000000000000000000..9f20c22f09ab03010db359a3b70266f6324823f5
--- /dev/null
+++ b/weights/blue-archive/SunoharaKokona/SunoharaKokona.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:142b960d0071671de3f13c15f47c683cdcd67068830f6c85e1c89c5b3a18ca45
+size 55029425
diff --git a/weights/blue-archive/SunoharaKokona/added_IVF217_Flat_nprobe_1_v1.index b/weights/blue-archive/SunoharaKokona/added_IVF217_Flat_nprobe_1_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..98244ccd6bf0967fb063e839866146725c15d348
--- /dev/null
+++ b/weights/blue-archive/SunoharaKokona/added_IVF217_Flat_nprobe_1_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f8d6309311901884c8226afb8450cb8a92680ea5a864f803f5c079f67174637b
+size 8979571
diff --git a/weights/blue-archive/SunoharaKokona/cover.png b/weights/blue-archive/SunoharaKokona/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..cbe87113063fbd34462ce36ff8452f22c73f44e3
Binary files /dev/null and b/weights/blue-archive/SunoharaKokona/cover.png differ
diff --git a/weights/blue-archive/TendouAlice/TendouAlice.pth b/weights/blue-archive/TendouAlice/TendouAlice.pth
new file mode 100644
index 0000000000000000000000000000000000000000..8ba38c8d89759139c4785c063a6d51b2302f5c8b
--- /dev/null
+++ b/weights/blue-archive/TendouAlice/TendouAlice.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cd8ca5e2c70af02b86422392e308545665ec5125a212e930fc19f088914f0788
+size 55028507
diff --git a/weights/blue-archive/TendouAlice/added_IVF152_Flat_nprobe_1_v1.index b/weights/blue-archive/TendouAlice/added_IVF152_Flat_nprobe_1_v1.index
new file mode 100644
index 0000000000000000000000000000000000000000..72e9da449d4eb1614ce2a764dfb367b3a6df9761
--- /dev/null
+++ b/weights/blue-archive/TendouAlice/added_IVF152_Flat_nprobe_1_v1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6159f4e26a68a66de6d9809d7cfe6d9d24c174c892b45b3c7b6a272263c82d04
+size 6302563
diff --git a/weights/blue-archive/TendouAlice/cover.png b/weights/blue-archive/TendouAlice/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..af331649deecfd812f7f31ed51b2a040cb642dc2
Binary files /dev/null and b/weights/blue-archive/TendouAlice/cover.png differ
diff --git a/weights/blue-archive/model_info.json b/weights/blue-archive/model_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..d614752af9fdc4bb84930b944b29bd3437acc934
--- /dev/null
+++ b/weights/blue-archive/model_info.json
@@ -0,0 +1,82 @@
+{
+ "TendouAlice": {
+ "enable": true,
+ "model_path": "TendouAlice.pth",
+ "title": "Blue Archive - TendouAlice",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF152_Flat_nprobe_1_v1.index",
+ "author": "by Farid"
+ },
+ "Arona": {
+ "enable": true,
+ "model_path": "Arona.pth",
+ "title": "Blue Archive - Arona",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF146_Flat_nprobe_1_v1.index",
+ "author": "by Farid"
+ },
+ "NoaBlueArchive": {
+ "enable": true,
+ "model_path": "NoaBlueArchive.pth",
+ "title": "Blue Archive - NoaBlueArchive",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF175_Flat_nprobe_1.index",
+ "author": "by farid"
+ },
+ "SorasakiHina": {
+ "enable": true,
+ "model_path": "SorasakiHina.pth",
+ "title": "Blue Archive - SorasakiHina",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF277_Flat_nprobe_1.index",
+ "author": "by LordDavis"
+ },
+ "AjitaniHifumi": {
+ "enable": true,
+ "model_path": "AjitaniHifumi.pth",
+ "title": "Blue Archive - AjitaniHifumi",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF602_Flat_nprobe_1.index",
+ "author": "by LordDavis"
+ },
+ "IgusaHaruka": {
+ "enable": true,
+ "model_path": "IgusaHaruka.pth",
+ "title": "Blue Archive - IgusaHaruka",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF365_Flat_nprobe_1_v1.index",
+ "author": "by LordDavis"
+ },
+ "KirifujiNagisa": {
+ "enable": true,
+ "model_path": "KirifujiNagisa.pth",
+ "title": "Blue Archive - KirifujiNagisa",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF229_Flat_nprobe_1_v1.index",
+ "author": "by LordDavis"
+ },
+ "SunoharaKokona": {
+ "enable": true,
+ "model_path": "SunoharaKokona.pth",
+ "title": "Blue Archive - SunoharaKokona",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF217_Flat_nprobe_1_v1.index",
+ "author": "by LordDavis"
+ },
+ "JomaeSaori": {
+ "enable": true,
+ "model_path": "JomaeSaori.pth",
+ "title": "Blue Archive - JomaeSaori",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF330_Flat_nprobe_1_JomaeSaori_v2.index",
+ "author": "by Maestro"
+ },
+ "HayaseYuuka": {
+ "enable": true,
+ "model_path": "HayaseYuuka.pth",
+ "title": "Blue Archive - HayaseYuuka",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF336_Flat_nprobe_1_v1.index",
+ "author": "by LordDavis"
+ }
+}
\ No newline at end of file
diff --git a/weights/folder_info.json b/weights/folder_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..e9a16b4c20b2643071515ec70f13c187f3479473
--- /dev/null
+++ b/weights/folder_info.json
@@ -0,0 +1,20 @@
+{
+ "blue-archive": {
+ "enable": true,
+ "title": "Blue Archive",
+ "folder_path": "blue-archive",
+ "description": "Models by Farid"
+ },
+ "Oshi No Ko": {
+ "enable": true,
+ "title": "Oshi No Ko",
+ "folder_path": "Oshi No Ko",
+ "description": "Models by Farid"
+ },
+ "Genshin Impact": {
+ "enable": true,
+ "title": "Genshin Impact",
+ "folder_path": "Genshin Impact",
+ "description": "Models by Farid"
+ }
+}
\ No newline at end of file