bibibi12345 commited on
Commit
8b7abe5
·
1 Parent(s): e0b9c59

huggingface support

Browse files
Files changed (4) hide show
  1. Dockerfile +2 -1
  2. README.md +107 -83
  3. app/main.py +35 -18
  4. docker-compose.yml +2 -1
Dockerfile CHANGED
@@ -16,4 +16,5 @@ RUN mkdir -p /app/credentials
16
  EXPOSE 8050
17
 
18
  # Command to run the application
19
- CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8050"]
 
 
16
  EXPOSE 8050
17
 
18
  # Command to run the application
19
+ # Use the default Hugging Face port 7860
20
+ CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
README.md CHANGED
@@ -1,85 +1,101 @@
 
 
 
 
 
 
 
 
 
1
  # OpenAI to Gemini Adapter
2
 
3
- This service provides an OpenAI-compatible API that translates requests to Google's Vertex AI Gemini models.
4
 
5
  ## Features
6
 
7
- - OpenAI-compatible API endpoints
8
- - Support for multiple Google Cloud service account credentials with automatic rotation
9
- - Streaming and non-streaming responses
10
- - Docker containerization for easy deployment
 
11
 
12
- ## Setup
13
 
14
- ### Prerequisites
15
 
16
- - Docker and Docker Compose
17
- - Google Cloud service account credentials with Vertex AI access
 
 
 
 
18
 
19
- ### Credential Setup
20
 
21
- The service supports multiple Google Cloud service account credentials and will rotate between them for API requests. This helps distribute API usage across multiple accounts.
22
 
23
- 1. Create a `credentials` directory in the project root:
24
- ```
25
- mkdir -p credentials
26
- ```
27
 
28
- 2. Add your service account JSON files to the credentials directory:
29
- ```
30
- # Example with multiple credential files
31
- cp /path/to/your/service-account1.json credentials/service-account1.json
32
- cp /path/to/your/service-account2.json credentials/service-account2.json
33
- cp /path/to/your/service-account3.json credentials/service-account3.json
34
- ```
35
 
36
- The service will automatically detect all `.json` files in the credentials directory.
37
 
38
- 3. For backward compatibility, you can still name one of your files `service-account.json`:
39
- ```
40
- cp /path/to/your/primary-account.json credentials/service-account.json
41
- ```
 
 
 
 
 
 
 
 
42
 
43
- ## Running the Service
44
 
45
  Start the service using Docker Compose:
46
 
47
- ```
48
  docker-compose up -d
49
  ```
50
 
51
- The service will be available at http://localhost:8050.
52
 
53
  ## API Usage
54
 
55
  The service implements OpenAI-compatible endpoints:
56
 
57
- - `GET /v1/models` - List available models
58
- - `POST /v1/chat/completions` - Create a chat completion
59
- - `GET /health` - Health check endpoint (includes credential status)
60
 
61
  All endpoints require authentication using an API key in the Authorization header.
62
 
63
  ### Authentication
64
 
65
- The service requires an API key for authentication. The default API key is `123456`.
66
 
67
- To authenticate, include the API key in the Authorization header using the Bearer token format:
68
 
69
  ```
70
- Authorization: Bearer 123456
71
  ```
72
 
73
- You can change the API key by setting the `API_KEY` environment variable in the docker-compose.yml file.
74
 
75
  ### Example Requests
76
 
 
 
77
  #### Basic Request
78
 
79
  ```bash
80
- curl -X POST http://localhost:8050/v1/chat/completions \
81
  -H "Content-Type: application/json" \
82
- -H "Authorization: Bearer 123456" \
83
  -d '{
84
  "model": "gemini-1.5-pro",
85
  "messages": [
@@ -93,9 +109,9 @@ curl -X POST http://localhost:8050/v1/chat/completions \
93
  #### Grounded Search Request
94
 
95
  ```bash
96
- curl -X POST http://localhost:8050/v1/chat/completions \
97
  -H "Content-Type: application/json" \
98
- -H "Authorization: Bearer 123456" \
99
  -d '{
100
  "model": "gemini-2.5-pro-exp-03-25-search",
101
  "messages": [
@@ -110,70 +126,78 @@ curl -X POST http://localhost:8050/v1/chat/completions \
110
 
111
  The API supports the following Vertex AI Gemini models:
112
 
113
- | Model ID | Description |
114
- |----------|-------------|
115
- | `gemini-2.5-pro-exp-03-25` | Gemini 2.5 Pro Experimental (March 25) |
116
  | `gemini-2.5-pro-exp-03-25-search` | Gemini 2.5 Pro with Google Search grounding |
117
- | `gemini-2.0-flash` | Gemini 2.0 Flash |
118
- | `gemini-2.0-flash-search` | Gemini 2.0 Flash with Google Search grounding |
119
- | `gemini-2.0-flash-lite` | Gemini 2.0 Flash Lite |
120
  | `gemini-2.0-flash-lite-search` | Gemini 2.0 Flash Lite with Google Search grounding |
121
- | `gemini-2.0-pro-exp-02-05` | Gemini 2.0 Pro Experimental (February 5) |
122
- | `gemini-1.5-flash` | Gemini 1.5 Flash |
123
- | `gemini-1.5-flash-8b` | Gemini 1.5 Flash 8B |
124
- | `gemini-1.5-pro` | Gemini 1.5 Pro |
125
- | `gemini-1.0-pro-002` | Gemini 1.0 Pro |
126
- | `gemini-1.0-pro-vision-001` | Gemini 1.0 Pro Vision |
127
- | `gemini-embedding-exp` | Gemini Embedding Experimental |
128
 
129
- Models with the `-search` suffix enable grounding with Google Search using dynamic retrieval, allowing the model to intelligently decide when to retrieve and reference up-to-date information from the web based on the query.
130
 
131
  ### Supported Parameters
132
 
133
- The API supports the following OpenAI-compatible parameters that map to Vertex AI's GenerativeModel:
134
 
135
- | OpenAI Parameter | Vertex AI Parameter | Description |
136
- |------------------|---------------------|-------------|
137
- | `temperature` | `temperature` | Controls randomness (0.0 to 1.0) |
138
- | `max_tokens` | `max_output_tokens` | Maximum number of tokens to generate |
139
- | `top_p` | `top_p` | Nucleus sampling parameter (0.0 to 1.0) |
140
- | `top_k` | `top_k` | Top-k sampling parameter |
141
- | `stop` | `stop_sequences` | List of strings that stop generation when encountered |
142
- | `presence_penalty` | `presence_penalty` | Penalizes repeated tokens |
143
- | `frequency_penalty` | `frequency_penalty` | Penalizes frequent tokens |
144
- | `seed` | `seed` | Random seed for deterministic generation |
145
- | `logprobs` | `logprobs` | Number of log probabilities to return |
146
- | `n` | `candidate_count` | Number of completions to generate |
147
 
148
- ## Credential Rotation
149
 
150
- The service automatically rotates through all available credential files for each request. If a credential fails, it will try the next one.
151
 
152
- You can check the status of credentials using the health endpoint:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
  ```bash
155
- curl http://localhost:8050/health
156
  ```
157
 
158
- This will return information about the available credentials:
159
 
160
  ```json
161
  {
162
  "status": "ok",
163
  "credentials": {
164
- "available": 3,
165
- "files": ["service-account1.json", "service-account2.json", "service-account3.json"],
166
- "current_index": 1
167
  }
168
  }
169
  ```
170
 
171
- ## Environment Variables
172
-
173
- - `CREDENTIALS_DIR`: Directory containing credential files (default: `/app/credentials`)
174
- - `GOOGLE_APPLICATION_CREDENTIALS`: Path to a specific credential file (used as fallback)
175
- - `API_KEY`: API key for authentication (default: `123456`)
176
-
177
  ## License
178
 
179
- This project is licensed under the MIT License - see the LICENSE file for details.
 
1
+ ---
2
+ title: OpenAI to Gemini Adapter
3
+ emoji: 🔄☁️
4
+ colorFrom: blue
5
+ colorTo: green
6
+ sdk: docker
7
+ app_port: 7860
8
+ ---
9
+
10
  # OpenAI to Gemini Adapter
11
 
12
+ This service provides an OpenAI-compatible API that translates requests to Google's Vertex AI Gemini models, allowing you to use Gemini models with tools expecting an OpenAI interface.
13
 
14
  ## Features
15
 
16
+ - OpenAI-compatible API endpoints (`/v1/chat/completions`, `/v1/models`).
17
+ - Supports Google Cloud credentials via `GOOGLE_CREDENTIALS_JSON` secret (recommended for Spaces) or local file methods.
18
+ - Supports credential rotation when using local files.
19
+ - Handles streaming and non-streaming responses.
20
+ - Configured for easy deployment on Hugging Face Spaces using Docker (port 7860) or locally via Docker Compose (port 8050).
21
 
22
+ ## Hugging Face Spaces Deployment (Recommended)
23
 
24
+ This application is ready for deployment on Hugging Face Spaces using Docker.
25
 
26
+ 1. **Create a new Space:** Go to Hugging Face Spaces and create a new Space, choosing "Docker" as the Space SDK.
27
+ 2. **Upload Files:** Upload the `app/` directory, `Dockerfile`, and `app/requirements.txt` to your Space repository. You can do this via the web interface or using Git.
28
+ 3. **Configure Secrets:** In your Space settings, navigate to the **Secrets** section and add the following secrets:
29
+ * `API_KEY`: Your desired API key for authenticating requests to this adapter service. If not set, it defaults to `123456`.
30
+ * `GOOGLE_CREDENTIALS_JSON`: The **entire content** of your Google Cloud service account JSON key file. Copy and paste the JSON content directly into the secret value field. **This is the required method for providing credentials on Hugging Face.**
31
+ 4. **Deployment:** Hugging Face will automatically build and deploy the Docker container. The application will run on port 7860 as defined in the `Dockerfile` and this README's metadata.
32
 
33
+ Your adapter service will be available at the URL provided by your Hugging Face Space (e.g., `https://your-user-name-your-space-name.hf.space`).
34
 
35
+ ## Local Docker Setup (for Development/Testing)
36
 
37
+ ### Prerequisites
 
 
 
38
 
39
+ - Docker and Docker Compose
40
+ - Google Cloud service account credentials with Vertex AI access
 
 
 
 
 
41
 
42
+ ### Credential Setup (Local Docker)
43
 
44
+ 1. Create a `credentials` directory in the project root:
45
+ ```bash
46
+ mkdir -p credentials
47
+ ```
48
+ 2. Add your service account JSON files to the `credentials` directory:
49
+ ```bash
50
+ # Example with multiple credential files
51
+ cp /path/to/your/service-account1.json credentials/service-account1.json
52
+ cp /path/to/your/service-account2.json credentials/service-account2.json
53
+ ```
54
+ The service will automatically detect and rotate through all `.json` files in this directory if the `GOOGLE_CREDENTIALS_JSON` environment variable is *not* set.
55
+ 3. Alternatively, set the `GOOGLE_APPLICATION_CREDENTIALS` environment variable *in your local environment or `docker-compose.yml`* to the *path* of a single credential file (used as a fallback if the other methods fail).
56
 
57
+ ### Running Locally
58
 
59
  Start the service using Docker Compose:
60
 
61
+ ```bash
62
  docker-compose up -d
63
  ```
64
 
65
+ The service will be available at `http://localhost:8050` (as defined in `docker-compose.yml`).
66
 
67
  ## API Usage
68
 
69
  The service implements OpenAI-compatible endpoints:
70
 
71
+ - `GET /v1/models` - List available models
72
+ - `POST /v1/chat/completions` - Create a chat completion
73
+ - `GET /health` - Health check endpoint (includes credential status)
74
 
75
  All endpoints require authentication using an API key in the Authorization header.
76
 
77
  ### Authentication
78
 
79
+ The service requires an API key for authentication.
80
 
81
+ To authenticate, include the API key in the `Authorization` header using the `Bearer` token format:
82
 
83
  ```
84
+ Authorization: Bearer YOUR_API_KEY
85
  ```
86
 
87
+ Replace `YOUR_API_KEY` with the key you configured (either via the `API_KEY` secret/environment variable or the default `123456`).
88
 
89
  ### Example Requests
90
 
91
+ *(Replace `YOUR_ADAPTER_URL` with your Hugging Face Space URL or `http://localhost:8050` if running locally)*
92
+
93
  #### Basic Request
94
 
95
  ```bash
96
+ curl -X POST YOUR_ADAPTER_URL/v1/chat/completions \
97
  -H "Content-Type: application/json" \
98
+ -H "Authorization: Bearer YOUR_API_KEY" \
99
  -d '{
100
  "model": "gemini-1.5-pro",
101
  "messages": [
 
109
  #### Grounded Search Request
110
 
111
  ```bash
112
+ curl -X POST YOUR_ADAPTER_URL/v1/chat/completions \
113
  -H "Content-Type: application/json" \
114
+ -H "Authorization: Bearer YOUR_API_KEY" \
115
  -d '{
116
  "model": "gemini-2.5-pro-exp-03-25-search",
117
  "messages": [
 
126
 
127
  The API supports the following Vertex AI Gemini models:
128
 
129
+ | Model ID | Description |
130
+ | ------------------------------ | ---------------------------------------------- |
131
+ | `gemini-2.5-pro-exp-03-25` | Gemini 2.5 Pro Experimental (March 25) |
132
  | `gemini-2.5-pro-exp-03-25-search` | Gemini 2.5 Pro with Google Search grounding |
133
+ | `gemini-2.0-flash` | Gemini 2.0 Flash |
134
+ | `gemini-2.0-flash-search` | Gemini 2.0 Flash with Google Search grounding |
135
+ | `gemini-2.0-flash-lite` | Gemini 2.0 Flash Lite |
136
  | `gemini-2.0-flash-lite-search` | Gemini 2.0 Flash Lite with Google Search grounding |
137
+ | `gemini-2.0-pro-exp-02-05` | Gemini 2.0 Pro Experimental (February 5) |
138
+ | `gemini-1.5-flash` | Gemini 1.5 Flash |
139
+ | `gemini-1.5-flash-8b` | Gemini 1.5 Flash 8B |
140
+ | `gemini-1.5-pro` | Gemini 1.5 Pro |
141
+ | `gemini-1.0-pro-002` | Gemini 1.0 Pro |
142
+ | `gemini-1.0-pro-vision-001` | Gemini 1.0 Pro Vision |
143
+ | `gemini-embedding-exp` | Gemini Embedding Experimental |
144
 
145
+ Models with the `-search` suffix enable grounding with Google Search using dynamic retrieval.
146
 
147
  ### Supported Parameters
148
 
149
+ The API supports common OpenAI-compatible parameters, mapping them to Vertex AI where possible:
150
 
151
+ | OpenAI Parameter | Vertex AI Parameter | Description |
152
+ | ------------------- | --------------------- | ------------------------------------------------- |
153
+ | `temperature` | `temperature` | Controls randomness (0.0 to 1.0) |
154
+ | `max_tokens` | `max_output_tokens` | Maximum number of tokens to generate |
155
+ | `top_p` | `top_p` | Nucleus sampling parameter (0.0 to 1.0) |
156
+ | `top_k` | `top_k` | Top-k sampling parameter |
157
+ | `stop` | `stop_sequences` | List of strings that stop generation when encountered |
158
+ | `presence_penalty` | `presence_penalty` | Penalizes repeated tokens |
159
+ | `frequency_penalty` | `frequency_penalty` | Penalizes frequent tokens |
160
+ | `seed` | `seed` | Random seed for deterministic generation |
161
+ | `logprobs` | `logprobs` | Number of log probabilities to return |
162
+ | `n` | `candidate_count` | Number of completions to generate |
163
 
164
+ ## Credential Handling Priority
165
 
166
+ The application loads Google Cloud credentials in the following order:
167
 
168
+ 1. **`GOOGLE_CREDENTIALS_JSON` Environment Variable / Secret:** Checks for the JSON *content* directly in this variable (Required for Hugging Face).
169
+ 2. **`credentials/` Directory (Local Only):** Looks for `.json` files in the directory specified by `CREDENTIALS_DIR` (Default: `/app/credentials` inside the container). Rotates through found files. Used if `GOOGLE_CREDENTIALS_JSON` is not set.
170
+ 3. **`GOOGLE_APPLICATION_CREDENTIALS` Environment Variable (Local Only):** Checks for a *file path* specified by this variable. Used as a fallback if the above methods fail.
171
+
172
+ ## Environment Variables / Secrets
173
+
174
+ - `API_KEY`: API key for authentication (Default: `123456`). **Required as Secret on Hugging Face.**
175
+ - `GOOGLE_CREDENTIALS_JSON`: **(Required Secret on Hugging Face)** The full JSON content of your service account key. Takes priority over other methods.
176
+ - `CREDENTIALS_DIR` (Local Only): Directory containing credential files (Default: `/app/credentials` in the container). Used if `GOOGLE_CREDENTIALS_JSON` is not set.
177
+ - `GOOGLE_APPLICATION_CREDENTIALS` (Local Only): Path to a *specific* credential file. Used as a fallback if the above methods fail.
178
+ - `PORT`: Not needed for `CMD` config (uses 7860). Hugging Face provides this automatically, `docker-compose.yml` maps 8050 locally.
179
+
180
+ ## Health Check
181
+
182
+ You can check the status of the service using the health endpoint:
183
 
184
  ```bash
185
+ curl YOUR_ADAPTER_URL/health -H "Authorization: Bearer YOUR_API_KEY"
186
  ```
187
 
188
+ This returns information about the credential status:
189
 
190
  ```json
191
  {
192
  "status": "ok",
193
  "credentials": {
194
+ "available": 1, // Example: 1 if loaded via JSON secret, or count if loaded from files
195
+ "files": [], // Lists files only if using CREDENTIALS_DIR method
196
+ "current_index": 0
197
  }
198
  }
199
  ```
200
 
 
 
 
 
 
 
201
  ## License
202
 
203
+ This project is licensed under the MIT License.
app/main.py CHANGED
@@ -173,28 +173,45 @@ class OpenAIRequest(BaseModel):
173
 
174
  # Configure authentication
175
  def init_vertex_ai():
 
176
  try:
177
- # First try to use the credential manager to get credentials
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  credentials, project_id = credential_manager.get_next_credentials()
179
-
180
  if credentials and project_id:
181
- client = genai.Client(vertexai=True,credentials=credentials, project=project_id, location="us-central1")
182
- # vertexai.init(credentials=credentials, project=project_id, location="us-central1")
183
- print(f"Initialized Vertex AI with project: {project_id}")
184
  return True
185
 
186
- # Fall back to environment variable if credential manager fails
187
  file_path = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS")
188
  if file_path and os.path.exists(file_path):
189
- credentials = service_account.Credentials.from_service_account_file(file_path,scopes=['https://www.googleapis.com/auth/cloud-platform'])
190
- project_id = credentials.project_id
191
- client = genai.Client(vertexai=True,credentials=credentials, project=project_id, location="us-central1")
192
- # vertexai.init(credentials=credentials, project=project_id, location="us-central1")
193
- print(f"Initialized Vertex AI with project: {project_id} (using GOOGLE_APPLICATION_CREDENTIALS)")
194
- return True
195
- else:
196
- print(f"Error: No valid credentials found. GOOGLE_APPLICATION_CREDENTIALS file not found at {file_path}")
197
- return False
 
 
 
198
  except Exception as e:
199
  print(f"Error initializing authentication: {e}")
200
  return False
@@ -645,9 +662,9 @@ async def chat_completions(request: OpenAIRequest, api_key: str = Depends(get_ap
645
 
646
  # Initialize Vertex AI with the rotated credentials
647
  try:
648
- client = genai.Client(vertexai=True,credentials=credentials, project=project_id, location="us-central1")
649
- # vertexai.init(credentials=credentials, project=project_id, location="us-central1")
650
- print(f"Using credentials for project: {project_id}")
651
  except Exception as auth_error:
652
  error_response = create_openai_error_response(
653
  500, f"Failed to initialize authentication: {str(auth_error)}", "server_error"
 
173
 
174
  # Configure authentication
175
  def init_vertex_ai():
176
+ global client # Ensure we modify the global client variable
177
  try:
178
+ # Priority 1: Check for credentials JSON content in environment variable (Hugging Face)
179
+ credentials_json_str = os.environ.get("GOOGLE_CREDENTIALS_JSON")
180
+ if credentials_json_str:
181
+ try:
182
+ credentials_info = json.loads(credentials_json_str)
183
+ credentials = service_account.Credentials.from_service_account_info(credentials_info, scopes=['https://www.googleapis.com/auth/cloud-platform'])
184
+ project_id = credentials.project_id
185
+ client = genai.Client(vertexai=True, credentials=credentials, project=project_id, location="us-central1")
186
+ print(f"Initialized Vertex AI using GOOGLE_CREDENTIALS_JSON env var for project: {project_id}")
187
+ return True
188
+ except Exception as e:
189
+ print(f"Error loading credentials from GOOGLE_CREDENTIALS_JSON: {e}")
190
+ # Fall through to other methods if this fails
191
+
192
+ # Priority 2: Try to use the credential manager to get credentials from files
193
  credentials, project_id = credential_manager.get_next_credentials()
194
+
195
  if credentials and project_id:
196
+ client = genai.Client(vertexai=True, credentials=credentials, project=project_id, location="us-central1")
197
+ print(f"Initialized Vertex AI using Credential Manager for project: {project_id}")
 
198
  return True
199
 
200
+ # Priority 3: Fall back to GOOGLE_APPLICATION_CREDENTIALS environment variable (file path)
201
  file_path = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS")
202
  if file_path and os.path.exists(file_path):
203
+ try:
204
+ credentials = service_account.Credentials.from_service_account_file(file_path, scopes=['https://www.googleapis.com/auth/cloud-platform'])
205
+ project_id = credentials.project_id
206
+ client = genai.Client(vertexai=True, credentials=credentials, project=project_id, location="us-central1")
207
+ print(f"Initialized Vertex AI using GOOGLE_APPLICATION_CREDENTIALS file path for project: {project_id}")
208
+ return True
209
+ except Exception as e:
210
+ print(f"Error loading credentials from GOOGLE_APPLICATION_CREDENTIALS path {file_path}: {e}")
211
+
212
+ # If none of the methods worked
213
+ print(f"Error: No valid credentials found. Tried GOOGLE_CREDENTIALS_JSON, Credential Manager ({credential_manager.credentials_dir}), and GOOGLE_APPLICATION_CREDENTIALS.")
214
+ return False
215
  except Exception as e:
216
  print(f"Error initializing authentication: {e}")
217
  return False
 
662
 
663
  # Initialize Vertex AI with the rotated credentials
664
  try:
665
+ # Re-initialize client for this request - credentials might have rotated
666
+ client = genai.Client(vertexai=True, credentials=credentials, project=project_id, location="us-central1")
667
+ print(f"Using credentials for project: {project_id} for this request")
668
  except Exception as auth_error:
669
  error_response = create_openai_error_response(
670
  500, f"Failed to initialize authentication: {str(auth_error)}", "server_error"
docker-compose.yml CHANGED
@@ -6,7 +6,8 @@ services:
6
  context: .
7
  dockerfile: Dockerfile
8
  ports:
9
- - "8050:8050"
 
10
  volumes:
11
  - ./credentials:/app/credentials
12
  environment:
 
6
  context: .
7
  dockerfile: Dockerfile
8
  ports:
9
+ # Map host port 8050 to container port 7860 (for Hugging Face compatibility)
10
+ - "8050:7860"
11
  volumes:
12
  - ./credentials:/app/credentials
13
  environment: