File size: 1,889 Bytes
b157648
 
f412d3b
b157648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f412d3b
b157648
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# app.py

import streamlit as st
from unsloth import FastLanguageModel
from transformers import TextStreamer

# To speed up model loading in repeated queries, you can use st.cache_resource (Streamlit 1.18+).
@st.cache_resource
def load_unsloth_model(
    model_name="azizsi/model2", 
    max_seq_length=4096, 
    dtype="float16", 
    load_in_4bit=False
):
    """
    Loads and prepares the model for inference using FastLanguageModel from Unsloth.
    Returns (model, tokenizer).
    """
    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name=model_name,
        max_seq_length=max_seq_length,
        dtype=dtype,
        load_in_4bit=load_in_4bit
    )

    # Enable 2x faster inference (per Unsloth docs)
    FastLanguageModel.for_inference(model)

    return model, tokenizer


def main():
    st.title("Unsloth Model Demo")

    # Provide a text input area for the user
    user_input = st.text_area("Enter your prompt:", "")

    # Generate button
    if st.button("Generate"):
        with st.spinner("Generating response..."):
            # Load the model & tokenizer
            model, tokenizer = load_unsloth_model()
            
            # Create a TextStreamer to stream tokens or capture final text
            streamer = TextStreamer(tokenizer)

            # Tokenize user prompt and move to GPU (or the model's device)
            inputs = tokenizer(user_input, return_tensors="pt").to(model.device)
            
            # Generate up to 128 new tokens (modify as desired)
            outputs = model.generate(**inputs, streamer=streamer, max_new_tokens=128)
            
            # If you want to display the entire response at once:
            generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

            st.markdown("**Response:**")
            st.write(generated_text)

if __name__ == "__main__":
    main()