Spaces:
Running
Running
kendrickfff
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,35 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
import torch
|
4 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
|
|
5 |
from PIL import Image
|
6 |
-
import
|
7 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
COCO_CLASSES = [
|
11 |
'airplane', 'apple', 'backpack', 'banana', 'baseball hat', 'baseball glove', 'bear', 'bed', 'bench', 'bicycle',
|
12 |
'bird', 'boat', 'book', 'bottle', 'bowl', 'broccoli', 'bus', 'cake', 'car', 'carrot', 'cat', 'cell phone', 'chair',
|
@@ -18,64 +41,108 @@ COCO_CLASSES = [
|
|
18 |
'traffic light', 'train', 'truck', 'tv', 'umbrella', 'vase', 'wine glass'
|
19 |
]
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
#
|
26 |
def analyze_image(image_path):
|
|
|
27 |
try:
|
28 |
-
# Open the image
|
29 |
-
image = Image.open(image_path)
|
30 |
-
|
31 |
-
# Preprocess the image
|
32 |
inputs = processor(images=image, return_tensors="pt")
|
33 |
|
34 |
-
# Perform
|
35 |
-
|
36 |
-
|
37 |
-
# Get the logits (class predictions) and boxes (bounding boxes)
|
38 |
-
logits = outputs.logits
|
39 |
-
boxes = outputs.pred_boxes
|
40 |
-
|
41 |
-
# Get the predicted labels (class IDs)
|
42 |
-
class_ids = logits.argmax(-1)
|
43 |
-
|
44 |
-
# Filter out detections with low confidence and map to custom labels
|
45 |
-
results = []
|
46 |
-
for idx, class_id in enumerate(class_ids[0]):
|
47 |
-
confidence = logits[0, idx, class_id].item()
|
48 |
-
if confidence > 0.5: # Confidence threshold
|
49 |
-
label = COCO_CLASSES[class_id]
|
50 |
-
box = boxes[0, idx].tolist()
|
51 |
-
results.append({
|
52 |
-
'label': label,
|
53 |
-
'confidence': confidence,
|
54 |
-
'box': box
|
55 |
-
})
|
56 |
-
|
57 |
-
if len(results) == 0:
|
58 |
-
return "No objects detected."
|
59 |
-
|
60 |
-
# Generate a response with the detected objects
|
61 |
-
detected_objects = "\n".join([f"{result['label']} (confidence: {result['confidence']:.2f})" for result in results])
|
62 |
-
return f"Detected Objects:\n{detected_objects}"
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
with gr.Blocks() as demo:
|
70 |
-
gr.Markdown("
|
71 |
-
gr.Markdown("
|
|
|
|
|
|
|
72 |
|
73 |
# User input components
|
|
|
|
|
74 |
img_upload = gr.Image(type="filepath", label="Upload an image for analysis")
|
75 |
-
output_text = gr.Textbox(label="Detection Results", interactive=False)
|
76 |
|
77 |
-
# Define
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
# Launch the interface
|
81 |
demo.launch()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
3 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
4 |
+
from langchain_google_genai.chat_models import ChatGoogleGenerativeAI # Import Gemini
|
5 |
from PIL import Image
|
6 |
+
import torch
|
7 |
import json
|
8 |
+
import requests
|
9 |
+
|
10 |
+
# Load credentials (stringified JSON) from environment variable for Gemini
|
11 |
+
credentials_string = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS")
|
12 |
+
if not credentials_string:
|
13 |
+
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS is not set in the environment!")
|
14 |
+
|
15 |
+
# Parse the stringified JSON back to a Python dictionary
|
16 |
+
credentials = json.loads(credentials_string)
|
17 |
+
|
18 |
+
# Save the credentials to a temporary JSON file (required by Google SDKs)
|
19 |
+
with open("service_account.json", "w") as f:
|
20 |
+
json.dump(credentials, f)
|
21 |
|
22 |
+
# Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the temporary file
|
23 |
+
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "service_account.json"
|
24 |
+
|
25 |
+
# Initialize Gemini model (chatbot)
|
26 |
+
llm = ChatGoogleGenerativeAI(model='gemini-1.5-pro')
|
27 |
+
|
28 |
+
# Initialize DETR model and processor for object detection
|
29 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
30 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
31 |
+
|
32 |
+
# Load COCO class labels (from the official COCO dataset)
|
33 |
COCO_CLASSES = [
|
34 |
'airplane', 'apple', 'backpack', 'banana', 'baseball hat', 'baseball glove', 'bear', 'bed', 'bench', 'bicycle',
|
35 |
'bird', 'boat', 'book', 'bottle', 'bowl', 'broccoli', 'bus', 'cake', 'car', 'carrot', 'cat', 'cell phone', 'chair',
|
|
|
41 |
'traffic light', 'train', 'truck', 'tv', 'umbrella', 'vase', 'wine glass'
|
42 |
]
|
43 |
|
44 |
+
# Global chat history variable
|
45 |
+
chat_history = []
|
46 |
+
|
47 |
+
# Function for chatting with Gemini
|
48 |
+
def chat_with_gemini(message):
|
49 |
+
global chat_history
|
50 |
+
bot_response = llm.predict(message) # This will interact with the Gemini model
|
51 |
+
chat_history.append((message, bot_response))
|
52 |
+
return chat_history
|
53 |
|
54 |
+
# Function for analyzing the uploaded image
|
55 |
def analyze_image(image_path):
|
56 |
+
global chat_history
|
57 |
try:
|
58 |
+
# Open and preprocess the image
|
59 |
+
image = Image.open(image_path).convert("RGB")
|
|
|
|
|
60 |
inputs = processor(images=image, return_tensors="pt")
|
61 |
|
62 |
+
# Perform inference
|
63 |
+
with torch.no_grad():
|
64 |
+
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# Set a target size for post-processing
|
67 |
+
target_sizes = torch.tensor([image.size[::-1]]) # (height, width)
|
68 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
|
69 |
+
|
70 |
+
# Collect detected objects (with no minimum confidence filter)
|
71 |
+
detected_objects = []
|
72 |
+
for idx, label in enumerate(results["labels"]):
|
73 |
+
# Get the object label based on label index
|
74 |
+
object_name = COCO_CLASSES[label.item()] # Assuming COCO_CLASSES is available
|
75 |
+
score = results["scores"][idx].item() # Confidence score for this detection
|
76 |
+
|
77 |
+
# Store only objects with a score higher than a threshold (e.g., 0.1)
|
78 |
+
if score > 0.1:
|
79 |
+
detected_objects.append(f"{object_name} (score: {score:.2f})")
|
80 |
|
81 |
+
if detected_objects:
|
82 |
+
bot_response = f"Objects detected: {', '.join(detected_objects)}."
|
83 |
+
else:
|
84 |
+
bot_response = "No objects detected."
|
85 |
|
86 |
+
chat_history.append(("Uploaded an image for analysis", bot_response))
|
87 |
+
return chat_history
|
88 |
+
except Exception as e:
|
89 |
+
error_msg = f"Error processing the image: {str(e)}"
|
90 |
+
chat_history.append(("Error during image analysis", error_msg))
|
91 |
+
return chat_history
|
92 |
+
|
93 |
+
# Build the Gradio interface
|
94 |
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown("# Ken Chatbot")
|
96 |
+
gr.Markdown("Ask me anything or upload an image for analysis!")
|
97 |
+
|
98 |
+
# Chatbot display without "User" or "Bot" labels
|
99 |
+
chatbot = gr.Chatbot(elem_id="chatbot")
|
100 |
|
101 |
# User input components
|
102 |
+
msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...", show_label=False)
|
103 |
+
send_btn = gr.Button("Send")
|
104 |
img_upload = gr.Image(type="filepath", label="Upload an image for analysis")
|
|
|
105 |
|
106 |
+
# Define interactions
|
107 |
+
def handle_text_message(message):
|
108 |
+
return chat_with_gemini(message)
|
109 |
+
|
110 |
+
def handle_image_upload(image_path):
|
111 |
+
return analyze_image(image_path)
|
112 |
+
|
113 |
+
# Set up Gradio components with Enter key for sending
|
114 |
+
msg.submit(handle_text_message, msg, chatbot)
|
115 |
+
send_btn.click(handle_text_message, msg, chatbot)
|
116 |
+
send_btn.click(lambda: "", None, msg) # Clear input field
|
117 |
+
img_upload.change(handle_image_upload, img_upload, chatbot)
|
118 |
+
|
119 |
+
# Custom CSS for styling without usernames
|
120 |
+
gr.HTML("""
|
121 |
+
<style>
|
122 |
+
#chatbot .message-container {
|
123 |
+
display: flex;
|
124 |
+
flex-direction: column;
|
125 |
+
margin-bottom: 10px;
|
126 |
+
max-width: 70%;
|
127 |
+
}
|
128 |
+
#chatbot .message {
|
129 |
+
border-radius: 15px;
|
130 |
+
padding: 10px;
|
131 |
+
margin: 5px 0;
|
132 |
+
word-wrap: break-word;
|
133 |
+
}
|
134 |
+
#chatbot .message.user {
|
135 |
+
background-color: #DCF8C6;
|
136 |
+
margin-left: auto;
|
137 |
+
text-align: right;
|
138 |
+
}
|
139 |
+
#chatbot .message.bot {
|
140 |
+
background-color: #E1E1E1;
|
141 |
+
margin-right: auto;
|
142 |
+
text-align: left;
|
143 |
+
}
|
144 |
+
</style>
|
145 |
+
""")
|
146 |
|
147 |
+
# Launch the Gradio interface
|
148 |
demo.launch()
|