kendrickfff commited on
Commit
b863376
·
verified ·
1 Parent(s): 04370e8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +278 -0
app.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import subprocess
4
+ import zipfile
5
+ import time
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.optim as optim
9
+ from torchvision import datasets, transforms, models
10
+ from torch.optim import lr_scheduler
11
+ import subprocess
12
+ import zipfile
13
+ from PIL import Image
14
+ import gradio as gr
15
+
16
+ # Step 1: Setup Kaggle API
17
+ # Ensure the .kaggle directory exists
18
+ kaggle_dir = os.path.expanduser("~/.kaggle")
19
+ if not os.path.exists(kaggle_dir):
20
+ os.makedirs(kaggle_dir)
21
+
22
+ # Step 2: Copy the kaggle.json file to the ~/.kaggle directory
23
+ kaggle_json_path = "kaggle.json"
24
+ kaggle_dest_path = os.path.join(kaggle_dir, "kaggle.json")
25
+
26
+ if not os.path.exists(kaggle_dest_path):
27
+ shutil.copy(kaggle_json_path, kaggle_dest_path)
28
+ os.chmod(kaggle_dest_path, 0o600)
29
+ print("Kaggle API key copied and permissions set.")
30
+ else:
31
+ print("Kaggle API key already exists.")
32
+
33
+ # Step 3: Download the dataset from Kaggle using Kaggle CLI
34
+ dataset_name = "mostafaabla/garbage-classification"
35
+ print(f"Downloading the dataset: {dataset_name}")
36
+ download_command = f"kaggle datasets download -d {dataset_name}"
37
+
38
+ # Run the download command
39
+ subprocess.run(download_command, shell=True)
40
+
41
+ # Step 4: Unzip the downloaded dataset
42
+ dataset_zip = "garbage-classification.zip"
43
+ extracted_folder = "./garbage-classification"
44
+
45
+ # Check if the zip file exists
46
+ if os.path.exists(dataset_zip):
47
+ if not os.path.exists(extracted_folder):
48
+ with zipfile.ZipFile(dataset_zip, 'r') as zip_ref:
49
+ zip_ref.extractall(extracted_folder)
50
+ print("Dataset unzipped successfully!")
51
+ else:
52
+ print("Dataset already unzipped.")
53
+ else:
54
+ print(f"Dataset zip file '{dataset_zip}' not found.")
55
+
56
+
57
+ # Path to the data directory
58
+ data_dir = 'C:\\Users\\kendr\\Downloads\\data' # Adjust this if necessary
59
+
60
+ # Define data transformations
61
+ data_transforms = {
62
+ 'train': transforms.Compose([
63
+ transforms.RandomResizedCrop(224),
64
+ transforms.RandomRotation(15),
65
+ transforms.RandomHorizontalFlip(),
66
+ transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
67
+ transforms.ToTensor(),
68
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
69
+ ]),
70
+ 'valid': transforms.Compose([
71
+ transforms.Resize(256),
72
+ transforms.CenterCrop(224),
73
+ transforms.ToTensor(),
74
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
75
+ ]),
76
+ }
77
+
78
+ # Create the datasets from the image folder
79
+ image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
80
+ for x in ['train', 'valid']}
81
+
82
+ # Create the dataloaders
83
+ dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4)
84
+ for x in ['train', 'valid']}
85
+
86
+ # Class names
87
+ class_names = image_datasets['train'].classes
88
+ print(f"Classes: {class_names}")
89
+
90
+ # Check if a GPU is available
91
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
92
+
93
+ # Load pre-trained ResNet50 model
94
+ model = models.resnet50(weights='ResNet50_Weights.DEFAULT') # Use weights instead of pretrained
95
+
96
+ # Modify the final layer to match the number of classes
97
+ num_ftrs = model.fc.in_features
98
+ model.fc = nn.Linear(num_ftrs, len(class_names)) # Output classes match
99
+
100
+ # Move the model to the GPU if available
101
+ model = model.to(device)
102
+
103
+ # Loss function and optimizer
104
+ criterion = nn.CrossEntropyLoss()
105
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
106
+
107
+ # Learning rate scheduler
108
+ scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
109
+
110
+ # Number of epochs
111
+ num_epochs = 10
112
+
113
+ # Training function with detailed output for each epoch
114
+ def train_model(model, criterion, optimizer, scheduler, num_epochs=10):
115
+ since = time.time()
116
+
117
+ best_model_wts = model.state_dict()
118
+ best_acc = 0.0
119
+
120
+ for epoch in range(num_epochs):
121
+ epoch_start = time.time() # Start time for this epoch
122
+ print(f'Epoch {epoch + 1}/{num_epochs}')
123
+ print('-' * 10)
124
+
125
+ # Each epoch has a training and validation phase
126
+ for phase in ['train', 'valid']:
127
+ if phase == 'train':
128
+ model.train() # Set model to training mode
129
+ else:
130
+ model.eval() # Set model to evaluate mode
131
+
132
+ running_loss = 0.0
133
+ running_corrects = 0
134
+
135
+ # Iterate over data
136
+ for inputs, labels in dataloaders[phase]:
137
+ inputs = inputs.to(device)
138
+ labels = labels.to(device)
139
+
140
+ # Zero the parameter gradients
141
+ optimizer.zero_grad()
142
+
143
+ # Forward
144
+ with torch.set_grad_enabled(phase == 'train'):
145
+ outputs = model(inputs)
146
+ _, preds = torch.max(outputs, 1)
147
+ loss = criterion(outputs, labels)
148
+
149
+ # Backward + optimize only if in training phase
150
+ if phase == 'train':
151
+ loss.backward()
152
+ optimizer.step()
153
+
154
+ # Statistics
155
+ running_loss += loss.item() * inputs.size(0)
156
+ running_corrects += torch.sum(preds == labels.data)
157
+
158
+ if phase == 'train':
159
+ scheduler.step()
160
+
161
+ # Calculate epoch loss and accuracy
162
+ epoch_loss = running_loss / len(image_datasets[phase])
163
+ epoch_acc = running_corrects.double() / len(image_datasets[phase])
164
+
165
+ # Print loss and accuracy for each phase
166
+ print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
167
+
168
+ # Deep copy the model if it's the best accuracy
169
+ if phase == 'valid' and epoch_acc > best_acc:
170
+ best_acc = epoch_acc
171
+ best_model_wts = model.state_dict()
172
+
173
+ epoch_end = time.time() # End time for this epoch
174
+ print(f'Epoch {epoch + 1} completed in {epoch_end - epoch_start:.2f} seconds.')
175
+
176
+ time_elapsed = time.time() - since
177
+ print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
178
+ print(f'Best val Acc: {best_acc:.4f}')
179
+
180
+ # Load best model weights
181
+ model.load_state_dict(best_model_wts)
182
+ return model
183
+
184
+ # Train the model
185
+ best_model = train_model(model, criterion, optimizer, scheduler, num_epochs=num_epochs)
186
+
187
+ # Save the model
188
+ torch.save(model.state_dict(), 'resnet50_garbage_classification.pth')
189
+
190
+ import pickle
191
+
192
+ # Manually creating the history dictionary based on the logs you provided
193
+ history = {
194
+ 'train_loss': [1.0083, 0.7347, 0.6510, 0.5762, 0.5478, 0.5223, 0.4974, 0.3464, 0.2896, 0.2604],
195
+ 'train_acc': [0.6850, 0.7687, 0.7913, 0.8126, 0.8210, 0.8272, 0.8355, 0.8870, 0.9049, 0.9136],
196
+ 'val_loss': [0.6304, 0.8616, 0.5594, 0.4006, 0.3968, 0.4051, 0.3223, 0.2221, 0.2125, 0.2076],
197
+ 'val_acc': [0.7985, 0.7307, 0.8260, 0.8655, 0.8793, 0.8729, 0.9094, 0.9338, 0.9338, 0.9326]
198
+ }
199
+
200
+ # Save the history as a pickle file
201
+ with open('training_history.pkl', 'wb') as f:
202
+ pickle.dump(history, f)
203
+
204
+ print('Training history saved as training_history.pkl')
205
+
206
+
207
+
208
+ # Load your model
209
+ def load_model():
210
+ model = models.resnet50(weights='DEFAULT') # Using default weights for initialization
211
+ num_ftrs = model.fc.in_features
212
+ model.fc = nn.Linear(num_ftrs, 12) # Adjust to the number of classes you have
213
+
214
+ # Load the state dict without the weights_only argument
215
+ model.load_state_dict(torch.load('resnet50_garbage_classification.pth', map_location=torch.device('cpu')))
216
+
217
+ model.eval() # Set to evaluation mode
218
+ return model
219
+
220
+ model = load_model()
221
+
222
+ # Define image transformations
223
+ transform = transforms.Compose([
224
+ transforms.Resize(256),
225
+ transforms.CenterCrop(224),
226
+ transforms.ToTensor(),
227
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
228
+ ])
229
+
230
+ # Class names
231
+ class_names = ['battery', 'biological', 'brown-glass', 'cardboard',
232
+ 'clothes', 'green-glass', 'metal', 'paper',
233
+ 'plastic', 'shoes', 'trash', 'white-glass']
234
+
235
+ # Define bin colors for each class
236
+ bin_colors = {
237
+ 'battery': 'Merah (Red)', # Limbah berbahaya
238
+ 'biological': 'Cokelat (Brown)', # Limbah organik
239
+ 'brown-glass': 'Hijau (Green)', # Gelas berwarna coklat
240
+ 'cardboard': 'Kuning (Yellow)', # Limbah daur ulang
241
+ 'clothes': 'Biru (Blue)', # Pakaian dan tekstil
242
+ 'green-glass': 'Hijau (Green)', # Gelas berwarna hijau
243
+ 'metal': 'Kuning (Yellow)', # Limbah daur ulang
244
+ 'paper': 'Kuning (Yellow)', # Limbah daur ulang
245
+ 'plastic': 'Kuning (Yellow)', # Limbah daur ulang
246
+ 'shoes': 'Biru (Blue)', # Pakaian dan tekstil
247
+ 'trash': 'Hitam (Black)', # Limbah umum
248
+ 'white-glass': 'Putih (White)' # Gelas berwarna putih
249
+ }
250
+
251
+ # Define the prediction function
252
+ def predict(image):
253
+ image = Image.fromarray(image) # Convert numpy array to PIL Image
254
+ image = transform(image) # Apply transformations
255
+ image = image.unsqueeze(0) # Add batch dimension
256
+
257
+ with torch.no_grad():
258
+ outputs = model(image)
259
+ _, predicted = torch.max(outputs, 1)
260
+
261
+ class_name = class_names[predicted.item()] # Return predicted class name
262
+ bin_color = bin_colors[class_name] # Get the corresponding bin color
263
+ return class_name, bin_color # Return both class name and bin color
264
+
265
+ # Make Gradio Interface
266
+ iface = gr.Interface(
267
+ fn=predict,
268
+ inputs=gr.Image(type="numpy", label="Unggah Gambar"),
269
+ outputs=[
270
+ gr.Textbox(label="Jenis Sampah"),
271
+ gr.Textbox(label="Tong Sampah yang Sesuai") # 2 output with label
272
+ ],
273
+ title="Klasifikasi Sampah dengan ResNet50",
274
+ description="Unggah gambar sampah, dan model akan mengklasifikasikannya ke dalam salah satu dari 12 kategori bersama dengan warna tempat sampah yang sesuai."
275
+ )
276
+
277
+
278
+ iface.launch(share=True)