Update app.py
Browse files
app.py
CHANGED
@@ -54,181 +54,8 @@ else:
|
|
54 |
print(f"Dataset zip file '{dataset_zip}' not found.")
|
55 |
|
56 |
|
57 |
-
# Path to the data directory
|
58 |
-
data_dir = '/home/user/app/data'
|
59 |
|
60 |
-
# Define data transformations
|
61 |
-
data_transforms = {
|
62 |
-
'train': transforms.Compose([
|
63 |
-
transforms.RandomResizedCrop(224),
|
64 |
-
transforms.RandomRotation(15),
|
65 |
-
transforms.RandomHorizontalFlip(),
|
66 |
-
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
|
67 |
-
transforms.ToTensor(),
|
68 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
69 |
-
]),
|
70 |
-
'valid': transforms.Compose([
|
71 |
-
transforms.Resize(256),
|
72 |
-
transforms.CenterCrop(224),
|
73 |
-
transforms.ToTensor(),
|
74 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
75 |
-
]),
|
76 |
-
}
|
77 |
-
|
78 |
-
# Create the datasets from the image folder
|
79 |
-
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
|
80 |
-
for x in ['train', 'valid']}
|
81 |
-
|
82 |
-
# Create the dataloaders
|
83 |
-
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4)
|
84 |
-
for x in ['train', 'valid']}
|
85 |
-
|
86 |
-
# Class names
|
87 |
-
class_names = image_datasets['train'].classes
|
88 |
-
print(f"Classes: {class_names}")
|
89 |
-
|
90 |
-
# Check if a GPU is available
|
91 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
92 |
-
|
93 |
-
# Load pre-trained ResNet50 model
|
94 |
-
model = models.resnet50(weights='ResNet50_Weights.DEFAULT') # Use weights instead of pretrained
|
95 |
-
|
96 |
-
# Modify the final layer to match the number of classes
|
97 |
-
num_ftrs = model.fc.in_features
|
98 |
-
model.fc = nn.Linear(num_ftrs, len(class_names)) # Output classes match
|
99 |
-
|
100 |
-
# Move the model to the GPU if available
|
101 |
-
model = model.to(device)
|
102 |
-
|
103 |
-
# Loss function and optimizer
|
104 |
-
criterion = nn.CrossEntropyLoss()
|
105 |
-
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
106 |
-
|
107 |
-
# Learning rate scheduler
|
108 |
-
scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
|
109 |
-
|
110 |
-
# Number of epochs
|
111 |
-
num_epochs = 20
|
112 |
-
|
113 |
-
# Training function with detailed output for each epoch
|
114 |
-
def train_model(model, criterion, optimizer, scheduler, num_epochs=10):
|
115 |
-
since = time.time()
|
116 |
-
|
117 |
-
best_model_wts = model.state_dict()
|
118 |
-
best_acc = 0.0
|
119 |
-
|
120 |
-
for epoch in range(num_epochs):
|
121 |
-
epoch_start = time.time() # Start time for this epoch
|
122 |
-
print(f'Epoch {epoch + 1}/{num_epochs}')
|
123 |
-
print('-' * 10)
|
124 |
-
|
125 |
-
# Each epoch has a training and validation phase
|
126 |
-
for phase in ['train', 'valid']:
|
127 |
-
if phase == 'train':
|
128 |
-
model.train() # Set model to training mode
|
129 |
-
else:
|
130 |
-
model.eval() # Set model to evaluate mode
|
131 |
-
|
132 |
-
running_loss = 0.0
|
133 |
-
running_corrects = 0
|
134 |
-
|
135 |
-
# Iterate over data
|
136 |
-
for inputs, labels in dataloaders[phase]:
|
137 |
-
inputs = inputs.to(device)
|
138 |
-
labels = labels.to(device)
|
139 |
-
|
140 |
-
# Zero the parameter gradients
|
141 |
-
optimizer.zero_grad()
|
142 |
-
|
143 |
-
# Forward
|
144 |
-
with torch.set_grad_enabled(phase == 'train'):
|
145 |
-
outputs = model(inputs)
|
146 |
-
_, preds = torch.max(outputs, 1)
|
147 |
-
loss = criterion(outputs, labels)
|
148 |
-
|
149 |
-
# Backward + optimize only if in training phase
|
150 |
-
if phase == 'train':
|
151 |
-
loss.backward()
|
152 |
-
optimizer.step()
|
153 |
-
|
154 |
-
# Statistics
|
155 |
-
running_loss += loss.item() * inputs.size(0)
|
156 |
-
running_corrects += torch.sum(preds == labels.data)
|
157 |
-
|
158 |
-
if phase == 'train':
|
159 |
-
scheduler.step()
|
160 |
|
161 |
-
# Calculate epoch loss and accuracy
|
162 |
-
epoch_loss = running_loss / len(image_datasets[phase])
|
163 |
-
epoch_acc = running_corrects.double() / len(image_datasets[phase])
|
164 |
-
|
165 |
-
# Print loss and accuracy for each phase
|
166 |
-
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
|
167 |
-
|
168 |
-
# Deep copy the model if it's the best accuracy
|
169 |
-
if phase == 'valid' and epoch_acc > best_acc:
|
170 |
-
best_acc = epoch_acc
|
171 |
-
best_model_wts = model.state_dict()
|
172 |
-
|
173 |
-
epoch_end = time.time() # End time for this epoch
|
174 |
-
print(f'Epoch {epoch + 1} completed in {epoch_end - epoch_start:.2f} seconds.')
|
175 |
-
|
176 |
-
time_elapsed = time.time() - since
|
177 |
-
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
|
178 |
-
print(f'Best val Acc: {best_acc:.4f}')
|
179 |
-
|
180 |
-
# Load best model weights
|
181 |
-
model.load_state_dict(best_model_wts)
|
182 |
-
return model
|
183 |
-
|
184 |
-
# Train the model
|
185 |
-
best_model = train_model(model, criterion, optimizer, scheduler, num_epochs=num_epochs)
|
186 |
-
|
187 |
-
# Save the model
|
188 |
-
torch.save(model.state_dict(), 'resnet50_garbage_classification.pth')
|
189 |
-
|
190 |
-
import pickle
|
191 |
-
|
192 |
-
# Mengupdate hasil train dan validate terbaru
|
193 |
-
history = {
|
194 |
-
'train_loss': [
|
195 |
-
0.9568, 0.6937, 0.5917, 0.5718, 0.5109,
|
196 |
-
0.4824, 0.4697, 0.3318, 0.2785, 0.2680,
|
197 |
-
0.2371, 0.2333, 0.2198, 0.2060, 0.1962,
|
198 |
-
0.1951, 0.1880, 0.1912, 0.1811, 0.1810
|
199 |
-
],
|
200 |
-
'train_acc': [
|
201 |
-
0.7011, 0.7774, 0.8094, 0.8146, 0.8331,
|
202 |
-
0.8452, 0.8447, 0.8899, 0.9068, 0.9114,
|
203 |
-
0.9216, 0.9203, 0.9254, 0.9306, 0.9352,
|
204 |
-
0.9346, 0.9368, 0.9353, 0.9396, 0.9409
|
205 |
-
],
|
206 |
-
'val_loss': [
|
207 |
-
0.4934, 0.3939, 0.4377, 0.3412, 0.2614,
|
208 |
-
0.2966, 0.2439, 0.1065, 0.0926, 0.0797,
|
209 |
-
0.0738, 0.0639, 0.0555, 0.0560, 0.0490,
|
210 |
-
0.0479, 0.0455, 0.0454, 0.0438, 0.0427
|
211 |
-
],
|
212 |
-
'val_acc': [
|
213 |
-
0.8481, 0.8734, 0.8663, 0.8915, 0.9172,
|
214 |
-
0.9011, 0.9221, 0.9649, 0.9714, 0.9759,
|
215 |
-
0.9762, 0.9791, 0.9827, 0.9812, 0.9843,
|
216 |
-
0.9850, 0.9852, 0.9854, 0.9854, 0.9866
|
217 |
-
]
|
218 |
-
}
|
219 |
-
|
220 |
-
# Simpan history sebagai file pickle
|
221 |
-
with open('training_history.pkl', 'wb') as f:
|
222 |
-
pickle.dump(history, f)
|
223 |
-
|
224 |
-
print('Training history saved as training_history.pkl')
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
import torch
|
230 |
-
import torch.nn as nn
|
231 |
-
from torchvision import models, transforms
|
232 |
from PIL import Image
|
233 |
import gradio as gr
|
234 |
|
@@ -305,4 +132,3 @@ iface = gr.Interface(
|
|
305 |
|
306 |
iface.launch(share=True)
|
307 |
|
308 |
-
token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
54 |
print(f"Dataset zip file '{dataset_zip}' not found.")
|
55 |
|
56 |
|
|
|
|
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
from PIL import Image
|
60 |
import gradio as gr
|
61 |
|
|
|
132 |
|
133 |
iface.launch(share=True)
|
134 |
|
|