|
import gradio as gr |
|
from mysite.libs.utilities import chat_with_interpreter, completion, process_file,no_process_file |
|
from interpreter import interpreter |
|
import mysite.interpreter.interpreter_config |
|
import duckdb |
|
|
|
|
|
def format_response(chunk, full_response): |
|
|
|
if chunk["type"] == "message": |
|
full_response += chunk.get("content", "") |
|
if chunk.get("end", False): |
|
full_response += "\n" |
|
|
|
|
|
if chunk["type"] == "code": |
|
if chunk.get("start", False): |
|
full_response += "```python\n" |
|
|
|
if chunk.get("end", False): |
|
full_response += "\n```\n" |
|
|
|
|
|
if chunk["type"] == "confirmation": |
|
if chunk.get("start", False): |
|
full_response += "```python\n" |
|
|
|
if chunk.get("end", False): |
|
full_response += "```\n" |
|
|
|
|
|
if chunk["type"] == "console": |
|
console_content = chunk.get("content", "") |
|
|
|
|
|
print(f"Processing console content: {console_content}, type={type(console_content)}") |
|
|
|
if not isinstance(console_content, str): |
|
console_content = str(console_content) |
|
print(f"Converted console_content to string: {console_content}") |
|
|
|
|
|
if console_content.isdigit() or console_content.strip().lower() == "none": |
|
print(f"Skipping unwanted console content: {console_content}") |
|
return full_response |
|
|
|
|
|
console_content = console_content.replace("`", "") |
|
|
|
|
|
if chunk.get("start", False): |
|
full_response += "```python\n" |
|
|
|
if chunk.get("format", "") == "active_line": |
|
if not console_content.strip(): |
|
full_response += "No output available on console.\n" |
|
else: |
|
full_response += console_content.rstrip("\n") + "\n" |
|
elif chunk.get("format", "") == "output": |
|
full_response += console_content.rstrip("\n") + "\n" |
|
|
|
if chunk.get("end", False): |
|
full_response += "```\n" |
|
|
|
if chunk["type"] == "image": |
|
if chunk.get("start", False) or chunk.get("end", False): |
|
full_response += "\n" |
|
else: |
|
image_format = chunk.get("format", "") |
|
if image_format == "base64.png": |
|
image_content = chunk.get("content", "") |
|
if image_content: |
|
image = Image.open(BytesIO(base64.b64decode(image_content))) |
|
new_image = Image.new("RGB", image.size, "white") |
|
new_image.paste(image, mask=image.split()[3]) |
|
buffered = BytesIO() |
|
new_image.save(buffered, format="PNG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
full_response += f"\n" |
|
|
|
return full_response |
|
|
|
import sqlite3 |
|
from datetime import datetime |
|
|
|
|
|
db_name = "chat_history.db" |
|
|
|
def initialize_db(): |
|
conn = sqlite3.connect(db_name) |
|
cursor = conn.cursor() |
|
cursor.execute(""" |
|
CREATE TABLE IF NOT EXISTS history ( |
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
role TEXT, |
|
type TEXT, |
|
content TEXT, |
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP |
|
) |
|
""") |
|
conn.commit() |
|
conn.close() |
|
|
|
def add_message_to_db(role, message_type, content): |
|
conn = sqlite3.connect(db_name) |
|
cursor = conn.cursor() |
|
cursor.execute("INSERT INTO history (role, type, content) VALUES (?, ?, ?)", (role, message_type, content)) |
|
conn.commit() |
|
conn.close() |
|
|
|
def get_recent_messages(limit=4): |
|
conn = sqlite3.connect(db_name) |
|
cursor = conn.cursor() |
|
cursor.execute("SELECT role, type, content FROM history ORDER BY timestamp DESC LIMIT ?", (limit,)) |
|
messages = cursor.fetchall() |
|
conn.close() |
|
return messages[::-1] |
|
|
|
def format_responses(chunk, full_response): |
|
|
|
return full_response + chunk.get("content", "") |
|
|
|
def chat_with_interpreter(message, history=None,passw=None, temperature=None, max_new_tokens=None): |
|
|
|
if passw != "12345": |
|
yield "full_response" |
|
return "full_response", history |
|
|
|
if message == "reset": |
|
interpreter.reset() |
|
return "Interpreter reset", history |
|
|
|
full_response = "" |
|
recent_messages = get_recent_messages(limit=4) |
|
|
|
for role, message_type, content in recent_messages: |
|
entry = {"role": role, "type": message_type, "content": content} |
|
interpreter.messages.append(entry) |
|
|
|
user_entry = {"role": "user", "type": "message", "content": message} |
|
interpreter.messages.append(user_entry) |
|
add_message_to_db("user", "message", message) |
|
|
|
for chunk in interpreter.chat(message, display=False, stream=True): |
|
if isinstance(chunk, dict): |
|
full_response = format_response(chunk, full_response) |
|
else: |
|
raise TypeError("Expected chunk to be a dictionary") |
|
print(full_response) |
|
yield full_response |
|
|
|
assistant_entry = {"role": "assistant", "type": "message", "content": full_response} |
|
interpreter.messages.append(assistant_entry) |
|
add_message_to_db("assistant", "message", full_response) |
|
|
|
yield full_response |
|
return full_response, history |
|
|
|
|
|
def chat_with_interpreter_no_stream(message, history=None, a=None, b=None, c=None, d=None): |
|
if message == "reset": |
|
interpreter.reset() |
|
return "Interpreter reset", history |
|
|
|
full_response = "" |
|
recent_messages = get_recent_messages() |
|
|
|
for role, message_type, content in recent_messages: |
|
entry = {"role": role, "type": message_type, "content": content} |
|
interpreter.messages.append(entry) |
|
|
|
user_entry = {"role": "user", "type": "message", "content": message} |
|
interpreter.messages.append(user_entry) |
|
add_message_to_db("user", "message", message) |
|
|
|
chunks = interpreter.chat(message, display=False, stream=False) |
|
for chunk in chunks: |
|
if isinstance(chunk, dict): |
|
full_response = format_response(chunk, full_response) |
|
else: |
|
raise TypeError("Expected chunk to be a dictionary") |
|
|
|
assistant_entry = {"role": "assistant", "type": "message", "content": str(full_response)} |
|
interpreter.messages.append(assistant_entry) |
|
add_message_to_db("assistant", "message", str(full_response)) |
|
|
|
|
|
return str(full_response), history |
|
|
|
|
|
|
|
initialize_db() |
|
|
|
|
|
PLACEHOLDER = """ |
|
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> |
|
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; "> |
|
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1> |
|
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p> |
|
</div> |
|
""" |
|
|
|
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface") |
|
|
|
|
|
|
|
gradio_interface = gr.ChatInterface( |
|
fn=chat_with_interpreter, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion( |
|
label="⚙️ Parameters", open=False, render=False |
|
), |
|
additional_inputs=[ |
|
gr.Textbox( |
|
type="password", |
|
label="パスワード", |
|
render=True |
|
), |
|
gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.95, |
|
label="Temperature", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=128, |
|
maximum=4096, |
|
step=1, |
|
value=512, |
|
label="Max new tokens", |
|
render=False, |
|
), |
|
|
|
], |
|
|
|
examples=[ |
|
["HTMLのサンプルを作成して"], |
|
[ |
|
"CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml" |
|
], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
if __name__ == '__main__': |
|
message = f""" |
|
postgres connection is this postgresql://miyataken999:[email protected]/neondb?sslmode=require |
|
create this tabale |
|
CREATE TABLE items ( |
|
id INT PRIMARY KEY, |
|
brand_name VARCHAR(255), |
|
model_name VARCHAR(255), |
|
product_number VARCHAR(255), |
|
purchase_store VARCHAR(255), |
|
purchase_date DATE, |
|
purchase_price INT, |
|
accessories TEXT, |
|
condition INT, |
|
metal_type VARCHAR(255), |
|
metal_weight DECIMAL(10, 2), |
|
diamond_certification BLOB, |
|
initial BOOLEAN |
|
); |
|
|
|
""" |
|
chat_with_interpreter(message) |
|
|