|
import os |
|
|
|
from langchain.chains import LLMChain |
|
from langchain_core.prompts import ( |
|
ChatPromptTemplate, |
|
HumanMessagePromptTemplate, |
|
MessagesPlaceholder, |
|
) |
|
from langchain_core.messages import SystemMessage |
|
from langchain.chains.conversation.memory import ConversationBufferWindowMemory |
|
from langchain_groq import ChatGroq |
|
from groq import Groq |
|
|
|
def test_prompt(prompt,question): |
|
client = Groq(api_key=os.getenv("api_key")) |
|
completion = client.chat.completions.create( |
|
model="llama3-8b-8192", |
|
messages=[ |
|
{ |
|
"role": "system", |
|
"content": prompt+" 毎回日本語で答える事" |
|
}, |
|
{ |
|
"role": "user", |
|
"content": question |
|
}, |
|
], |
|
temperature=1, |
|
max_tokens=1024, |
|
top_p=1, |
|
stream=False, |
|
stop=None, |
|
) |
|
|
|
print(completion.choices[0].message) |
|
return completion.choices[0].message.content |
|
|
|
|
|
|
|
def prompt_genalate(word,sys_prompt="あなたはプロンプト作成の優秀なアシスタントです。答えは日本語で答えます"): |
|
|
|
groq_api_key = os.getenv("api_key") |
|
groq_chat = ChatGroq(groq_api_key=groq_api_key, model_name="llama3-70b-8192") |
|
|
|
system_prompt = sys_prompt |
|
conversational_memory_length = 50 |
|
|
|
memory = ConversationBufferWindowMemory( |
|
k=conversational_memory_length, memory_key="chat_history", return_messages=True |
|
) |
|
|
|
|
|
user_question = word |
|
|
|
|
|
|
|
|
|
|
|
if user_question: |
|
|
|
prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
|
|
SystemMessage(content=system_prompt), |
|
|
|
MessagesPlaceholder(variable_name="chat_history"), |
|
|
|
HumanMessagePromptTemplate.from_template("{human_input}"), |
|
] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
conversation = LLMChain( |
|
llm=groq_chat, |
|
prompt=prompt, |
|
verbose=False, |
|
memory=memory, |
|
) |
|
response = conversation.predict(human_input=user_question) |
|
|
|
print("User: ", user_question) |
|
print("Assistant:", response) |
|
|
|
return user_question,user_question+"\r\n[役割]\r\n"+response |
|
|