Spaces:
Running
Running
import os, types, traceback, copy | |
import json | |
from enum import Enum | |
import time | |
from typing import Callable, Optional | |
from litellm.utils import ModelResponse, get_secret, Choices, Message, Usage | |
import litellm | |
import sys, httpx | |
from .prompt_templates.factory import prompt_factory, custom_prompt | |
class GeminiError(Exception): | |
def __init__(self, status_code, message): | |
self.status_code = status_code | |
self.message = message | |
self.request = httpx.Request( | |
method="POST", | |
url="https://developers.generativeai.google/api/python/google/generativeai/chat", | |
) | |
self.response = httpx.Response(status_code=status_code, request=self.request) | |
super().__init__( | |
self.message | |
) # Call the base class constructor with the parameters it needs | |
class GeminiConfig: | |
""" | |
Reference: https://ai.google.dev/api/python/google/generativeai/GenerationConfig | |
The class `GeminiConfig` provides configuration for the Gemini's API interface. Here are the parameters: | |
- `candidate_count` (int): Number of generated responses to return. | |
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response. | |
- `max_output_tokens` (int): The maximum number of tokens to include in a candidate. If unset, this will default to output_token_limit specified in the model's specification. | |
- `temperature` (float): Controls the randomness of the output. Note: The default value varies by model, see the Model.temperature attribute of the Model returned the genai.get_model function. Values can range from [0.0,1.0], inclusive. A value closer to 1.0 will produce responses that are more varied and creative, while a value closer to 0.0 will typically result in more straightforward responses from the model. | |
- `top_p` (float): Optional. The maximum cumulative probability of tokens to consider when sampling. | |
- `top_k` (int): Optional. The maximum number of tokens to consider when sampling. | |
""" | |
candidate_count: Optional[int] = None | |
stop_sequences: Optional[list] = None | |
max_output_tokens: Optional[int] = None | |
temperature: Optional[float] = None | |
top_p: Optional[float] = None | |
top_k: Optional[int] = None | |
def __init__( | |
self, | |
candidate_count: Optional[int] = None, | |
stop_sequences: Optional[list] = None, | |
max_output_tokens: Optional[int] = None, | |
temperature: Optional[float] = None, | |
top_p: Optional[float] = None, | |
top_k: Optional[int] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
def completion( | |
model: str, | |
messages: list, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
api_key, | |
encoding, | |
logging_obj, | |
custom_prompt_dict: dict, | |
acompletion: bool = False, | |
optional_params=None, | |
litellm_params=None, | |
logger_fn=None, | |
): | |
try: | |
import google.generativeai as genai | |
except: | |
raise Exception( | |
"Importing google.generativeai failed, please run 'pip install -q google-generativeai" | |
) | |
genai.configure(api_key=api_key) | |
if model in custom_prompt_dict: | |
# check if the model has a registered custom prompt | |
model_prompt_details = custom_prompt_dict[model] | |
prompt = custom_prompt( | |
role_dict=model_prompt_details["roles"], | |
initial_prompt_value=model_prompt_details["initial_prompt_value"], | |
final_prompt_value=model_prompt_details["final_prompt_value"], | |
messages=messages, | |
) | |
else: | |
prompt = prompt_factory( | |
model=model, messages=messages, custom_llm_provider="gemini" | |
) | |
## Load Config | |
inference_params = copy.deepcopy(optional_params) | |
inference_params.pop( | |
"stream", None | |
) # palm does not support streaming, so we handle this by fake streaming in main.py | |
config = litellm.GeminiConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in inference_params | |
): # completion(top_k=3) > gemini_config(top_k=3) <- allows for dynamic variables to be passed in | |
inference_params[k] = v | |
## LOGGING | |
logging_obj.pre_call( | |
input=prompt, | |
api_key="", | |
additional_args={"complete_input_dict": {"inference_params": inference_params}}, | |
) | |
## COMPLETION CALL | |
try: | |
_model = genai.GenerativeModel(f"models/{model}") | |
response = _model.generate_content( | |
contents=prompt, | |
generation_config=genai.types.GenerationConfig(**inference_params), | |
) | |
except Exception as e: | |
raise GeminiError( | |
message=str(e), | |
status_code=500, | |
) | |
## LOGGING | |
logging_obj.post_call( | |
input=prompt, | |
api_key="", | |
original_response=response, | |
additional_args={"complete_input_dict": {}}, | |
) | |
print_verbose(f"raw model_response: {response}") | |
## RESPONSE OBJECT | |
completion_response = response | |
try: | |
choices_list = [] | |
for idx, item in enumerate(completion_response.candidates): | |
if len(item.content.parts) > 0: | |
message_obj = Message(content=item.content.parts[0].text) | |
else: | |
message_obj = Message(content=None) | |
choice_obj = Choices(index=idx + 1, message=message_obj) | |
choices_list.append(choice_obj) | |
model_response["choices"] = choices_list | |
except Exception as e: | |
traceback.print_exc() | |
raise GeminiError( | |
message=traceback.format_exc(), status_code=response.status_code | |
) | |
try: | |
completion_response = model_response["choices"][0]["message"].get("content") | |
if completion_response is None: | |
raise Exception | |
except: | |
original_response = f"response: {response}" | |
if hasattr(response, "candidates"): | |
original_response = f"response: {response.candidates}" | |
if "SAFETY" in original_response: | |
original_response += "\nThe candidate content was flagged for safety reasons." | |
elif "RECITATION" in original_response: | |
original_response += "\nThe candidate content was flagged for recitation reasons." | |
raise GeminiError( | |
status_code=400, | |
message=f"No response received. Original response - {original_response}", | |
) | |
## CALCULATING USAGE | |
prompt_str = "" | |
for m in messages: | |
if isinstance(m["content"], str): | |
prompt_str += m["content"] | |
elif isinstance(m["content"], list): | |
for content in m["content"]: | |
if content["type"] == "text": | |
prompt_str += content["text"] | |
prompt_tokens = len(encoding.encode(prompt_str)) | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
) | |
model_response["created"] = int(time.time()) | |
model_response["model"] = "gemini/" + model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
model_response.usage = usage | |
return model_response | |
def embedding(): | |
# logic for parsing in - calling - parsing out model embedding calls | |
pass | |