Spaces:
Running
Running
import os, types | |
import json | |
from enum import Enum | |
import requests | |
import time | |
from typing import Callable, Optional | |
import litellm | |
from litellm.utils import ModelResponse, Usage | |
class NLPCloudError(Exception): | |
def __init__(self, status_code, message): | |
self.status_code = status_code | |
self.message = message | |
super().__init__( | |
self.message | |
) # Call the base class constructor with the parameters it needs | |
class NLPCloudConfig: | |
""" | |
Reference: https://docs.nlpcloud.com/#generation | |
- `max_length` (int): Optional. The maximum number of tokens that the generated text should contain. | |
- `length_no_input` (boolean): Optional. Whether `min_length` and `max_length` should not include the length of the input text. | |
- `end_sequence` (string): Optional. A specific token that should be the end of the generated sequence. | |
- `remove_end_sequence` (boolean): Optional. Whether to remove the `end_sequence` string from the result. | |
- `remove_input` (boolean): Optional. Whether to remove the input text from the result. | |
- `bad_words` (list of strings): Optional. List of tokens that are not allowed to be generated. | |
- `temperature` (float): Optional. Temperature sampling. It modulates the next token probabilities. | |
- `top_p` (float): Optional. Top P sampling. Below 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. | |
- `top_k` (int): Optional. Top K sampling. The number of highest probability vocabulary tokens to keep for top k filtering. | |
- `repetition_penalty` (float): Optional. Prevents the same word from being repeated too many times. | |
- `num_beams` (int): Optional. Number of beams for beam search. | |
- `num_return_sequences` (int): Optional. The number of independently computed returned sequences. | |
""" | |
max_length: Optional[int] = None | |
length_no_input: Optional[bool] = None | |
end_sequence: Optional[str] = None | |
remove_end_sequence: Optional[bool] = None | |
remove_input: Optional[bool] = None | |
bad_words: Optional[list] = None | |
temperature: Optional[float] = None | |
top_p: Optional[float] = None | |
top_k: Optional[int] = None | |
repetition_penalty: Optional[float] = None | |
num_beams: Optional[int] = None | |
num_return_sequences: Optional[int] = None | |
def __init__( | |
self, | |
max_length: Optional[int] = None, | |
length_no_input: Optional[bool] = None, | |
end_sequence: Optional[str] = None, | |
remove_end_sequence: Optional[bool] = None, | |
remove_input: Optional[bool] = None, | |
bad_words: Optional[list] = None, | |
temperature: Optional[float] = None, | |
top_p: Optional[float] = None, | |
top_k: Optional[int] = None, | |
repetition_penalty: Optional[float] = None, | |
num_beams: Optional[int] = None, | |
num_return_sequences: Optional[int] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
def validate_environment(api_key): | |
headers = { | |
"accept": "application/json", | |
"content-type": "application/json", | |
} | |
if api_key: | |
headers["Authorization"] = f"Token {api_key}" | |
return headers | |
def completion( | |
model: str, | |
messages: list, | |
api_base: str, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
api_key, | |
logging_obj, | |
optional_params=None, | |
litellm_params=None, | |
logger_fn=None, | |
default_max_tokens_to_sample=None, | |
): | |
headers = validate_environment(api_key) | |
## Load Config | |
config = litellm.NLPCloudConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in optional_params | |
): # completion(top_k=3) > togetherai_config(top_k=3) <- allows for dynamic variables to be passed in | |
optional_params[k] = v | |
completion_url_fragment_1 = api_base | |
completion_url_fragment_2 = "/generation" | |
model = model | |
text = " ".join(message["content"] for message in messages) | |
data = { | |
"text": text, | |
**optional_params, | |
} | |
completion_url = completion_url_fragment_1 + model + completion_url_fragment_2 | |
## LOGGING | |
logging_obj.pre_call( | |
input=text, | |
api_key=api_key, | |
additional_args={ | |
"complete_input_dict": data, | |
"headers": headers, | |
"api_base": completion_url, | |
}, | |
) | |
## COMPLETION CALL | |
response = requests.post( | |
completion_url, | |
headers=headers, | |
data=json.dumps(data), | |
stream=optional_params["stream"] if "stream" in optional_params else False, | |
) | |
if "stream" in optional_params and optional_params["stream"] == True: | |
return clean_and_iterate_chunks(response) | |
else: | |
## LOGGING | |
logging_obj.post_call( | |
input=text, | |
api_key=api_key, | |
original_response=response.text, | |
additional_args={"complete_input_dict": data}, | |
) | |
print_verbose(f"raw model_response: {response.text}") | |
## RESPONSE OBJECT | |
try: | |
completion_response = response.json() | |
except: | |
raise NLPCloudError(message=response.text, status_code=response.status_code) | |
if "error" in completion_response: | |
raise NLPCloudError( | |
message=completion_response["error"], | |
status_code=response.status_code, | |
) | |
else: | |
try: | |
if len(completion_response["generated_text"]) > 0: | |
model_response["choices"][0]["message"][ | |
"content" | |
] = completion_response["generated_text"] | |
except: | |
raise NLPCloudError( | |
message=json.dumps(completion_response), | |
status_code=response.status_code, | |
) | |
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. | |
prompt_tokens = completion_response["nb_input_tokens"] | |
completion_tokens = completion_response["nb_generated_tokens"] | |
model_response["created"] = int(time.time()) | |
model_response["model"] = model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
model_response.usage = usage | |
return model_response | |
# def clean_and_iterate_chunks(response): | |
# def process_chunk(chunk): | |
# print(f"received chunk: {chunk}") | |
# cleaned_chunk = chunk.decode("utf-8") | |
# # Perform further processing based on your needs | |
# return cleaned_chunk | |
# for line in response.iter_lines(): | |
# if line: | |
# yield process_chunk(line) | |
def clean_and_iterate_chunks(response): | |
buffer = b"" | |
for chunk in response.iter_content(chunk_size=1024): | |
if not chunk: | |
break | |
buffer += chunk | |
while b"\x00" in buffer: | |
buffer = buffer.replace(b"\x00", b"") | |
yield buffer.decode("utf-8") | |
buffer = b"" | |
# No more data expected, yield any remaining data in the buffer | |
if buffer: | |
yield buffer.decode("utf-8") | |
def embedding(): | |
# logic for parsing in - calling - parsing out model embedding calls | |
pass | |