Spaces:
Running
Running
import os, types | |
import json | |
from enum import Enum | |
import requests | |
import time, traceback | |
from typing import Callable, Optional | |
from litellm.utils import ModelResponse, Choices, Message, Usage | |
import litellm | |
import httpx | |
class CohereError(Exception): | |
def __init__(self, status_code, message): | |
self.status_code = status_code | |
self.message = message | |
self.request = httpx.Request( | |
method="POST", url="https://api.cohere.ai/v1/generate" | |
) | |
self.response = httpx.Response(status_code=status_code, request=self.request) | |
super().__init__( | |
self.message | |
) # Call the base class constructor with the parameters it needs | |
class CohereConfig: | |
""" | |
Reference: https://docs.cohere.com/reference/generate | |
The class `CohereConfig` provides configuration for the Cohere's API interface. Below are the parameters: | |
- `num_generations` (integer): Maximum number of generations returned. Default is 1, with a minimum value of 1 and a maximum value of 5. | |
- `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default value is 20. | |
- `truncate` (string): Specifies how the API handles inputs longer than maximum token length. Options include NONE, START, END. Default is END. | |
- `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.75. | |
- `preset` (string): Identifier of a custom preset, a combination of parameters such as prompt, temperature etc. | |
- `end_sequences` (array of strings): The generated text gets cut at the beginning of the earliest occurrence of an end sequence, which will be excluded from the text. | |
- `stop_sequences` (array of strings): The generated text gets cut at the end of the earliest occurrence of a stop sequence, which will be included in the text. | |
- `k` (integer): Limits generation at each step to top `k` most likely tokens. Default is 0. | |
- `p` (number): Limits generation at each step to most likely tokens with total probability mass of `p`. Default is 0. | |
- `frequency_penalty` (number): Reduces repetitiveness of generated tokens. Higher values apply stronger penalties to previously occurred tokens. | |
- `presence_penalty` (number): Reduces repetitiveness of generated tokens. Similar to frequency_penalty, but this penalty applies equally to all tokens that have already appeared. | |
- `return_likelihoods` (string): Specifies how and if token likelihoods are returned with the response. Options include GENERATION, ALL and NONE. | |
- `logit_bias` (object): Used to prevent the model from generating unwanted tokens or to incentivize it to include desired tokens. e.g. {"hello_world": 1233} | |
""" | |
num_generations: Optional[int] = None | |
max_tokens: Optional[int] = None | |
truncate: Optional[str] = None | |
temperature: Optional[int] = None | |
preset: Optional[str] = None | |
end_sequences: Optional[list] = None | |
stop_sequences: Optional[list] = None | |
k: Optional[int] = None | |
p: Optional[int] = None | |
frequency_penalty: Optional[int] = None | |
presence_penalty: Optional[int] = None | |
return_likelihoods: Optional[str] = None | |
logit_bias: Optional[dict] = None | |
def __init__( | |
self, | |
num_generations: Optional[int] = None, | |
max_tokens: Optional[int] = None, | |
truncate: Optional[str] = None, | |
temperature: Optional[int] = None, | |
preset: Optional[str] = None, | |
end_sequences: Optional[list] = None, | |
stop_sequences: Optional[list] = None, | |
k: Optional[int] = None, | |
p: Optional[int] = None, | |
frequency_penalty: Optional[int] = None, | |
presence_penalty: Optional[int] = None, | |
return_likelihoods: Optional[str] = None, | |
logit_bias: Optional[dict] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
def validate_environment(api_key): | |
headers = { | |
"accept": "application/json", | |
"content-type": "application/json", | |
} | |
if api_key: | |
headers["Authorization"] = f"Bearer {api_key}" | |
return headers | |
def completion( | |
model: str, | |
messages: list, | |
api_base: str, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
api_key, | |
logging_obj, | |
optional_params=None, | |
litellm_params=None, | |
logger_fn=None, | |
): | |
headers = validate_environment(api_key) | |
completion_url = api_base | |
model = model | |
prompt = " ".join(message["content"] for message in messages) | |
## Load Config | |
config = litellm.CohereConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in optional_params | |
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in | |
optional_params[k] = v | |
data = { | |
"model": model, | |
"prompt": prompt, | |
**optional_params, | |
} | |
## LOGGING | |
logging_obj.pre_call( | |
input=prompt, | |
api_key=api_key, | |
additional_args={ | |
"complete_input_dict": data, | |
"headers": headers, | |
"api_base": completion_url, | |
}, | |
) | |
## COMPLETION CALL | |
response = requests.post( | |
completion_url, | |
headers=headers, | |
data=json.dumps(data), | |
stream=optional_params["stream"] if "stream" in optional_params else False, | |
) | |
## error handling for cohere calls | |
if response.status_code != 200: | |
raise CohereError(message=response.text, status_code=response.status_code) | |
if "stream" in optional_params and optional_params["stream"] == True: | |
return response.iter_lines() | |
else: | |
## LOGGING | |
logging_obj.post_call( | |
input=prompt, | |
api_key=api_key, | |
original_response=response.text, | |
additional_args={"complete_input_dict": data}, | |
) | |
print_verbose(f"raw model_response: {response.text}") | |
## RESPONSE OBJECT | |
completion_response = response.json() | |
if "error" in completion_response: | |
raise CohereError( | |
message=completion_response["error"], | |
status_code=response.status_code, | |
) | |
else: | |
try: | |
choices_list = [] | |
for idx, item in enumerate(completion_response["generations"]): | |
if len(item["text"]) > 0: | |
message_obj = Message(content=item["text"]) | |
else: | |
message_obj = Message(content=None) | |
choice_obj = Choices( | |
finish_reason=item["finish_reason"], | |
index=idx + 1, | |
message=message_obj, | |
) | |
choices_list.append(choice_obj) | |
model_response["choices"] = choices_list | |
except Exception as e: | |
raise CohereError( | |
message=response.text, status_code=response.status_code | |
) | |
## CALCULATING USAGE | |
prompt_tokens = len(encoding.encode(prompt)) | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
) | |
model_response["created"] = int(time.time()) | |
model_response["model"] = model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
model_response.usage = usage | |
return model_response | |
def embedding( | |
model: str, | |
input: list, | |
api_key: Optional[str] = None, | |
logging_obj=None, | |
model_response=None, | |
encoding=None, | |
optional_params=None, | |
): | |
headers = validate_environment(api_key) | |
embed_url = "https://api.cohere.ai/v1/embed" | |
model = model | |
data = {"model": model, "texts": input, **optional_params} | |
if "3" in model and "input_type" not in data: | |
# cohere v3 embedding models require input_type, if no input_type is provided, default to "search_document" | |
data["input_type"] = "search_document" | |
## LOGGING | |
logging_obj.pre_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
) | |
## COMPLETION CALL | |
response = requests.post(embed_url, headers=headers, data=json.dumps(data)) | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=response, | |
) | |
""" | |
response | |
{ | |
'object': "list", | |
'data': [ | |
] | |
'model', | |
'usage' | |
} | |
""" | |
if response.status_code != 200: | |
raise CohereError(message=response.text, status_code=response.status_code) | |
embeddings = response.json()["embeddings"] | |
output_data = [] | |
for idx, embedding in enumerate(embeddings): | |
output_data.append( | |
{"object": "embedding", "index": idx, "embedding": embedding} | |
) | |
model_response["object"] = "list" | |
model_response["data"] = output_data | |
model_response["model"] = model | |
input_tokens = 0 | |
for text in input: | |
input_tokens += len(encoding.encode(text)) | |
model_response["usage"] = { | |
"prompt_tokens": input_tokens, | |
"total_tokens": input_tokens, | |
} | |
return model_response | |