ringkas-ulas / app.py
kensvin's picture
first time true
b516e31
raw
history blame
15.8 kB
import spaces
import os
from dotenv import load_dotenv
import re
from urllib.parse import urlparse
import pandas as pd
import unicodedata as uni
import emoji
from langchain_openai import ChatOpenAI
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import DataFrameLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
import gradio as gr
import logging
import requests
# Load environment variables
load_dotenv()
# Set command line arguments for Gradio
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[logging.StreamHandler()],
)
logger = logging.getLogger(__name__)
import http.client
http.client.HTTPConnection.debuglevel = 1
req_log = logging.getLogger("requests.packages.urllib3")
req_log.setLevel(logging.DEBUG)
req_log.propagate = True
# Constants
LIMIT = 1000 # Limit to 1000 reviews to avoid long processing times
OpenAIModel = "gpt-3.5-turbo"
shop_id = ""
item_id = ""
item = {}
cache_URL = ""
db = None
qa = None
cache = {}
import json
# Function to request product ID from Tokopedia
def request_product_id(shop_domain, product_key):
ENDPOINT = "https://gql.tokopedia.com/graphql/PDPGetLayoutQuery"
payload = {
"operationName": "PDPGetLayoutQuery",
"variables": {
"shopDomain": shop_domain,
"productKey": product_key,
"layoutID": "",
"apiVersion": 1,
"firstTime": True,
},
}
headers = {
'authority': 'gql.tokopedia.com',
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'content-type': 'application/json',
'cookie': '_UUID_NONLOGIN_=e9727c37c5f733a77479185a66e63e4d; _UUID_NONLOGIN_.sig=tkAjvTdngH8Tn2TawWMZs8yir7g; DID=a717cbd11e2c1799009d1f87dd469aee95e922f0f927d3df40966a41e4eec18f634c74b0f2242b80393e711af4bf7119; DID_JS=YTcxN2NiZDExZTJjMTc5OTAwOWQxZjg3ZGQ0NjlhZWU5NWU5MjJmMGY5MjdkM2RmNDA5NjZhNDFlNGVlYzE4ZjYzNGM3NGIwZjIyNDJiODAzOTNlNzExYWY0YmY3MTE547DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=; __auc=f6d4b66f17cefc7db9583cc0ea3; _hjid=52f6214b-1f92-4aac-a3be-adc11e04aafc; cto_bundle=T0m1vF83VlNReTd2VXh6JTJGdGNtNXhZUDZMbkQ3WjZveUxUM1ZVUHdkd3FKcSUyQlNTMUclMkJtZHpDdyUyRllUU0x3ZWlHWHJGT2dIWWQ4WTdqejBxSTNJWFMwMGMlMkZHVXJuUWUyZG9VaDRlblczS0F5TWhJM0YzN2VRdDhwS3UlMkZzV2clMkYxRTlpczRXaWt3Z0xMbWJqbEhtZFg4VlFWV1ZmQSUzRCUzRA; _UUID_CAS_=cc18f322-9a5c-4cf6-9dfd-1270e46f8582; _CASE_=732a6c416c2a3238242a69416c2a3238242a646a642a322a2a242a6b416c2a3238242a6467666f2a322a2a242a64697c2a322a2a242a784b672a322a2a242a7f416c2a32393a3a39383b3f3d242a7b416c2a3239393d3b383d3f3b242a7b5c71786d2a322a3a602a242a7f607b2a322a5373542a7f697a6d60677d7b6d57616c542a32393a3a39383b3f3d24542a7b6d7a7e616b6d577c71786d542a32542a3a60542a24542a57577c71786d6669656d542a32542a5f697a6d60677d7b6d7b542a752473542a7f697a6d60677d7b6d57616c542a323824542a7b6d7a7e616b6d577c71786d542a32542a393d65542a24542a57577c71786d6669656d542a32542a5f697a6d60677d7b6d7b542a75552a75; _gcl_au=1.1.1070690307.1661094594; _jxx=74cb82d0-f38f-11ec-b88d-977b36f46df7; _jx=74cb82d0-f38f-11ec-b88d-977b36f46df7; hfv_banner=true; bm_sz=FEDD193B43C05ABC0ECC7F218FD5E1C0~YAAQrSE1F/1cP+SDAQAA9oK15BF3DdkWy7nnyvTZieay5zJg128l/5uxqPSqkvFazOh4Wv3W/4AUQLS9ZTkA7gC6IWSGdmyUZZDpZneKXHpnw0z91FQk9Ydt+eYC27M4tsYrzfda+aWzsuJrefZsvvOvug/ZvrS4RI1pFjgoeAaotUY3gVVJBEa7KCQis4W/5OO94n03wgyxu7fB1vq8Gve2bXtPMuOP9kc5ShEm/stdSNt9WjiVt4Yvg9TMEDMK/8UqBRsvXbD8YPvbYdWMUw12n/bq+LfTV2EPb8hs1YAkS1U8+IE=~3293746~3355201; _SID_Tokopedia_=699V7myhqHJTekLwfsmffoi8jhxDptrX0TwX7hPKexK0RauqTC_em34ZEmpLo2P4yP7P2bCiEz2ll3qvPtNZtHAc3ocJtX5BLZG8pSe5mP3NYlRhpiclF-cTdKOejSvt; _gid=GA1.2.750563175.1665989199; _jxxs=1665989198-74cb82d0-f38f-11ec-b88d-977b36f46df7; _jxs=1665989198-74cb82d0-f38f-11ec-b88d-977b36f46df7; __asc=c2c83db8183e4b1d556eeadc2a6; NR_SID=NRl9cf5q6os1xrv; AMP_TOKEN=%24NOT_FOUND; ak_bmsc=154ED6F998E215265D990C8CABCF4618~000000000000000000000000000000~YAAQrSE1F3NuP+SDAQAALge35BEb0jR/EDHlGS9fxmk/fhk3+qBfnzY2Jv4HxyBnR6N0LsUayf3aiZXy3bUvITnTC1ZgZmWsLLcdS2aqgATfgZVTpkFvW9tCgDV0L3fpPHYR3sGnhjtTirg4mfbGw+C3xEDjSn14AS7SNnN0aCgzZzX7e229gmZGfuOALcII9lwh7LwBRSSd/BSKyn3Y34PH7qqwOS+F624Xm9fNwbbMGdnadv9PfPteUhSC9U0cqgtDxE7pAjc8vewzIf2xm/cr0+dCN+s7shGPXDk+ELtFGKYgFyz1Sp1aOIs606S4hJpX/sTzXvLceppM0tJ66/vCIzwAJD4id/VwC3N1teNAly0yhb28sTe5lNA5RnTYE27j6cEAGLbKObWIzNyULaf3e2bv0o5utLMRpqGbApAoKvbDgOBPjF+rBxoKSoByJnxlCM98M0G9XAzxpRDnRFLujKTzZ8CKnMk9FrZpdbttHVJT9YTHic7TMHYIOsUgra67HX3PGg==; _abck=DB9B8AC184B53D64511C0CA8E46737CB~0~YAAQrSE1F9ZuP+SDAQAAKxG35AgWg2PHBBvM9/T36YC42lsBvwpdbpPSZABAxneyJL5ZbzE4lx5xlz2XwH9a8MQ5IfXHqhgsra6cBqqSzU8xgcNOFIlp7RMpBNfjV2Cwla2iNAzzdbmskpkIB8HqujKdWibzNMJpXB/YqmiZwj/FLyVR8kUpJo+UG0evJyaNil6vVqoXXUPQmUFSGAoArQTI8WXXlKanMKbaIh8xLxRgv1rt5kKf5/R1m6275w1fQfh83by6VurvHnEd0YDOndLmPJdXI8Piow/tMatTi3FNObNjmHg5CNA63K5yxPtTnJsl3kG1Wexk7cH4FFpG74EMGWHukQZ6IFpeUymcj52FjxWYPwAH0lEKNq/qdOibLir0JybgJeLz8xa1eN2kXLlo06yKOnEkUWDl~-1~-1~-1; _dc_gtm_UA-126956641-6=1; _ga_70947XW48P=GS1.1.1665989198.16.1.1665989428.60.0.0; _ga=GA1.2.426299726.1636110422; _dc_gtm_UA-9801603-6=1; _abck=DB9B8AC184B53D64511C0CA8E46737CB~-1~YAAQrSE1F6clQOSDAQAA8Z3F5AhK11JVGEv0Mwg28CHe7ro9JDkPKhPuivMf6GtvJC4Bk/p7zI4a2xBftcSFG9nLsyh8w7LWvqI9LXyIg8zU4rbbRPpp5yk+oCyh7u0KTSOM4XRJaXk2MKwIG+Irdo5rGB8e0UJy+dr6OsWCBl/bnTIXj2xIvqwKEbLiGyyNX+keTPXnqVhARZ/m0OmEUnreuuXiazWGwjCJMPeMd2H405ipu3hEEJYVDEaxMp+zpT1y3FqjjfgUkSzoISVkh2rF73Cpz4yYNfC0HQeI0E1mcDJjDcxXQjErIOkN1O5bcwK/fWpXcC7r9nWWyDUB8RJanaDewcwGelUaKbA6lOmoJwIuCK7ON8DQzweB4opfl/xTUD7GVBnTyxhavU1zs3G+FDX+9UwPAaOw~0~-1~-1; bm_sz=933FB20E8A08C7F904B2BBEFAF59CF75~YAAQrSE1F8lFP+SDAQAAGuez5BFT+bdQDJxSRM+CqoyWKuJfBc5YLC9LptyhgD3iV0UTDDXYfIRkrJDvV3Uec6IMyRTsdgAjoHmRZ7fcDgjn1ynK05v+6t+cnwthQS1mSNrX6pjpQXQ3GJYjyW4SOG/TxwhZdXe13s/IYVoT8wsqF3jE/zmnc+FRmDrDQRpll4sWG/F/nsWCuBmtRrbB9nuHCuLffgln81YTFV1rWA8koN7HsTzOhv8+t3U1tkERLb1/B4OIaNAiP777rxQXW1gXyC7PafPY98603/oT9yhiNBb1q1U=~4534576~3163705',
'origin': 'https://www.tokopedia.com',
'queryhash': 'v1:90338d207352e8b71cf754979b915218;false',
'referer': 'https://www.tokopedia.com/miniso-official/miniso-sandal-rumah-slipper-wanita-selop-comfortable-nyaman-flip-flop-light-green-39-40?extParam=src%3Dmultiloc%26whid%3D7377294',
'sec-ch-ua': '"Chromium";v="106", "Google Chrome";v="106", "Not;A=Brand";v="99"',
'sec-ch-ua-mobile': '?1',
'sec-ch-ua-platform': '"Android"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-site',
'user-agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Mobile Safari/537.36',
'x-device': 'mobile',
'x-source': 'tokopedia-lite',
'x-tkpd-akamai': 'pdpGetLayout',
'x-tkpd-lite-service': 'atreus',
'x-version': '859a718'
}
response = requests.post(ENDPOINT, headers=headers, json=payload)
response.raise_for_status()
logger.info(response.text)
return response
# payload = {
# "operationName": "PDPGetLayoutQuery",
# "variables": {
# "shopDomain": f"{shop_domain}",
# "productKey": f"{product_key}",
# "apiVersion": 1,
# },
# "query": """fragment ProductVariant on pdpDataProductVariant {
# errorCode
# parentID
# defaultChild
# children {
# productID
# }
# __typename
# }
# query PDPGetLayoutQuery($shopDomain: String, $productKey: String, $layoutID: String, $apiVersion: Float, $userLocation: pdpUserLocation, $extParam: String, $tokonow: pdpTokoNow, $deviceID: String) {
# pdpGetLayout(shopDomain: $shopDomain, productKey: $productKey, layoutID: $layoutID, apiVersion: $apiVersion, userLocation: $userLocation, extParam: $extParam, tokonow: $tokonow, deviceID: $deviceID) {
# requestID
# name
# pdpSession
# basicInfo {
# id: productID
# }
# components {
# name
# type
# position
# data {
# ...ProductVariant
# __typename
# }
# __typename
# }
# __typename
# }
# }
# """,
# }
# headers = {
# "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
# "Referer": "https://www.tokopedia.com",
# "X-TKPD-AKAMAI": "pdpGetLayout",
# }
# try:
# response = requests.post(ENDPOINT, json=payload, headers=headers, timeout=60)
# response.raise_for_status()
# logger.info(f"Request successful. Status code: {response.status_code}")
# return response
# except requests.exceptions.RequestException as e:
# logger.error(f"Request failed: {e}")
# return None
# Function to request product reviews from Tokopedia
def request_product_review(product_id, page=1, limit=20):
ENDPOINT = "https://gql.tokopedia.com/graphql/productReviewList"
payload = {
"operationName": "productReviewList",
"variables": {
"productID": f"{product_id}",
"page": page,
"limit": limit,
"sortBy": "",
"filterBy": "",
},
"query": """query productReviewList($productID: String!, $page: Int!, $limit: Int!, $sortBy: String, $filterBy: String) {
productrevGetProductReviewList(productID: $productID, page: $page, limit: $limit, sortBy: $sortBy, filterBy: $filterBy) {
productID
list {
id: feedbackID
variantName
message
productRating
reviewCreateTime
reviewCreateTimestamp
isReportable
isAnonymous
reviewResponse {
message
createTime
__typename
}
user {
userID
fullName
image
url
__typename
}
likeDislike {
totalLike
likeStatus
__typename
}
stats {
key
formatted
count
__typename
}
badRatingReasonFmt
__typename
}
shop {
shopID
name
url
image
__typename
}
hasNext
totalReviews
__typename
}
}
""",
}
headers = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
"Referer": "https://www.tokopedia.com",
"X-TKPD-AKAMAI": "productReviewList",
}
try:
response = requests.post(ENDPOINT, json=payload, headers=headers, timeout=60)
response.raise_for_status()
logger.info(f"Request successful. Status code: {response.status_code}")
return response
except requests.exceptions.RequestException as e:
logger.error(f"Request failed: {e}")
return None
# Function to scrape reviews for a product
def scrape(product_id, max_reviews=LIMIT):
all_reviews = []
page = 1
has_next = True
logger.info("Extracting product reviews...")
while has_next and len(all_reviews) < max_reviews:
response = request_product_review(product_id, page=page)
if not response:
break
data = response.json()["data"]["productrevGetProductReviewList"]
reviews = data["list"]
all_reviews.extend(reviews)
has_next = data["hasNext"]
page += 1
reviews_df = pd.json_normalize(all_reviews)
reviews_df.rename(columns={"message": "comment"}, inplace=True)
reviews_df = reviews_df[["comment"]]
logger.info(reviews_df.head())
return reviews_df
# Function to extract product ID from URL
def get_product_id(URL):
parsed_url = urlparse(URL)
*_, shop, product_key = parsed_url.path.split("/")
response = request_product_id(shop, product_key)
if response:
product_id = response.json()["data"]["pdpGetLayout"]["basicInfo"]["id"]
logger.info(f"Product ID: {product_id}")
return product_id
else:
logger.error("Failed to get product ID")
return None
# Function to clean the reviews DataFrame
def clean(df):
df = df.dropna().copy().reset_index(drop=True) # Drop reviews with empty comments
df = df[df["comment"] != ""].reset_index(drop=True) # Remove empty reviews
df["comment"] = df["comment"].apply(lambda x: clean_text(x)) # Clean text
df = df[df["comment"] != ""].reset_index(drop=True) # Remove empty reviews
logger.info("Cleaned reviews DataFrame")
return df
# Function to clean individual text entries
def clean_text(text):
text = uni.normalize("NFKD", text) # Normalize characters
text = emoji.replace_emoji(text, "") # Remove emoji
text = re.sub(r"(\w)\1{2,}", r"\1", text) # Remove repeated characters
text = re.sub(r"[ ]+", " ", text).strip() # Remove extra spaces
return text
# Initialize LLM and embeddings
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1)
embeddings = HuggingFaceEmbeddings(model_name="LazarusNLP/all-indobert-base-v2")
# Function to generate a summary or answer based on reviews
@spaces.GPU
async def generate(URL, query):
global cache_URL, db, qa, cache
if not URL or not query:
return "Input kosong"
try:
product_id = get_product_id(URL)
if not product_id:
return "Gagal mendapatkan product ID"
if URL not in cache:
reviews = scrape(product_id)
if reviews.empty:
return "Tidak ada ulasan ditemukan"
cleaned_reviews = clean(reviews)
loader = DataFrameLoader(cleaned_reviews, page_content_column="comment")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=50
)
docs = text_splitter.split_documents(documents)
db = FAISS.from_documents(docs, embeddings)
cache[URL] = (docs, db)
else:
docs, db = cache[URL]
qa = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever())
res = await qa.ainvoke(query)
return res["result"]
except Exception as e:
logger.error(f"Error in generating response: {e}")
return "Gagal mendapatkan review dari URL"
# Set up Gradio interface
product_box = gr.Textbox(label="URL Produk", placeholder="URL produk dari Tokopedia")
query_box = gr.Textbox(
lines=2,
label="Kueri",
placeholder="Contoh: Apa yang orang katakan tentang kualitas produknya?, Bagaimana pendapat orang yang kurang puas dengan produknya?",
)
gr.Interface(
fn=generate,
inputs=[product_box, query_box],
outputs=[gr.Textbox(label="Jawaban")],
title="RingkasUlas",
description="Bot percakapan yang bisa meringkas ulasan-ulasan produk di Tokopedia Indonesia (https://tokopedia.com/). Harap bersabar, bot ini dapat memakan waktu agak lama saat mengambil ulasan dari Tokopedia dan menyiapkan jawabannya.",
allow_flagging="never",
).launch(debug=True)