Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import time | |
import openai | |
import pandas as pd | |
openai_api_key_textbox = "" | |
model = None | |
tokenizer = None | |
generator = None | |
csv_name = "disease_database_mini.csv" | |
df = pd.read_csv(csv_name) | |
openai.api_key = "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" | |
def csv_prompter(question,csv_name): | |
fulltext = "A question is provided below. Given the question, extract " + \ | |
"keywords from the text. Focus on extracting the keywords that we can use " + \ | |
"to best lookup answers to the question. \n" + \ | |
"---------------------\n" + \ | |
"{}\n".format(question) + \ | |
"---------------------\n" + \ | |
"Provide keywords in the following comma-separated format.\nKeywords: " | |
messages = [ | |
{"role": "system", "content": ""}, | |
] | |
messages.append( | |
{"role": "user", "content": f"{fulltext}"} | |
) | |
rsp = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=messages | |
) | |
keyword_list = rsp.get("choices")[0]["message"]["content"] | |
keyword_list = keyword_list.replace(",","").split(" ") | |
print(keyword_list) | |
divided_text = [] | |
csvdata = df.to_dict('records') | |
step_length = 15 | |
for csv_item in range(0,len(csvdata),step_length): | |
csv_text = str(csvdata[csv_item:csv_item+step_length]).replace("}, {", "\n\n").replace("\"", "")#.replace("[", "").replace("]", "") | |
divided_text.append(csv_text) | |
answer_llm = "" | |
score_textlist = [0] * len(divided_text) | |
for i, chunk in enumerate(divided_text): | |
for t, keyw in enumerate(keyword_list): | |
if keyw.lower() in chunk.lower(): | |
score_textlist[i] = score_textlist[i] + 1 | |
answer_list = [] | |
divided_text = [item for _, item in sorted(zip(score_textlist, divided_text), reverse=True)] | |
for i, chunk in enumerate(divided_text): | |
if i>4: | |
continue | |
fulltext = "{}".format(chunk) + \ | |
"\n---------------------\n" + \ | |
"Based on the Table above and not prior knowledge, " + \ | |
"Select the Table Entries that will help to answer the question: {}\n Output in the format of \" Disease: <>; Symptom: <>; Medical Test: <>; Medications: <>;\". If there is no useful form entries, output: 'No Entry'".format(question) | |
print(fulltext) | |
messages = [ | |
{"role": "system", "content": ""}, | |
] | |
messages.append( | |
{"role": "user", "content": f"{fulltext}"} | |
) | |
rsp = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=messages | |
) | |
answer_llm = rsp.get("choices")[0]["message"]["content"] | |
print("\nAnswer: " + answer_llm) | |
print() | |
if not "No Entry" in answer_llm: | |
answer_list.append(answer_llm) | |
fulltext = "The original question is as follows: {}\n".format(question) + \ | |
"Based on this Table:\n" + \ | |
"------------\n" + \ | |
"{}\n".format(str("\n\n".join(answer_list))) + \ | |
"------------\n" + \ | |
"Answer: " | |
print(fulltext) | |
messages = [ | |
{"role": "system", "content": ""}, | |
] | |
messages.append( | |
{"role": "user", "content": f"{fulltext}"} | |
) | |
rsp = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=messages | |
) | |
answer_llm = rsp.get("choices")[0]["message"]["content"] | |
print("\nFinal Answer: " + answer_llm) | |
print() | |
return answer_llm | |
with gr.Blocks() as demo: | |
gr.Markdown("# Autonomous ChatDoctor (openai version), based on disease database knowledge") | |
gr.Markdown("## Example: If I have frontal headache, fever, and painful sinuses, what disease should I have, and what medical test should I take?") | |
gr.Markdown("Our model will answer based on the content of the excel below, so please try to ask questions based on the table content.") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
Initialization = gr.Button("Initialization") | |
def restart(history): | |
invitation = "ChatDoctor: " | |
human_invitation = "Patient: " | |
return [[" \n",invitation+" I am ChatDoctor, what medical questions do you have?"]] | |
def user(user_message, history): | |
invitation = "ChatDoctor: " | |
human_invitation = "Patient: " | |
return "", history +[[human_invitation+user_message, None]] | |
def bot(history): | |
invitation = "ChatDoctor: " | |
human_invitation = "Patient: " | |
print(history) | |
question = "" | |
for each_ques in history: | |
question = question+ each_ques[0].replace("Patient: ","")+" \n" | |
response = csv_prompter(question,csv_name) | |
response = invitation+ response | |
history[-1][1] = response | |
return history | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False).then(restart, chatbot, chatbot) | |
Initialization.click(lambda: None, None, chatbot, queue=False).then(restart, chatbot, chatbot) | |
if __name__ == "__main__": | |
demo.launch() | |