Spaces:
Runtime error
Runtime error
use transfromer pipeline
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
-
from transformers import
|
4 |
from diffusers import StableDiffusionPipeline
|
5 |
|
6 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
7 |
-
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
8 |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
9 |
|
10 |
captions = []
|
@@ -12,6 +10,13 @@ captions = []
|
|
12 |
with st.sidebar:
|
13 |
files = st.file_uploader("Upload images to blend", accept_multiple_files=True)
|
14 |
st.divider()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
image_gen_guidance = st.slider("Stable Diffusion: Guidance Scale", value=7.5)
|
16 |
image_gen_steps = st.slider("stable Diffusion: Inference Steps", value=50)
|
17 |
|
@@ -22,12 +27,11 @@ with col1:
|
|
22 |
image = Image.open(file_name)
|
23 |
|
24 |
with st.spinner('Captioning Provided Image'):
|
25 |
-
|
26 |
-
|
27 |
-
description = processor.decode(out[0], skip_special_tokens=True)
|
28 |
-
captions.append(description)
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
with col2:
|
33 |
if len(captions) > 0:
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
+
from transformers import pipeline as transformer
|
4 |
from diffusers import StableDiffusionPipeline
|
5 |
|
|
|
|
|
6 |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
7 |
|
8 |
captions = []
|
|
|
10 |
with st.sidebar:
|
11 |
files = st.file_uploader("Upload images to blend", accept_multiple_files=True)
|
12 |
st.divider()
|
13 |
+
caption_model = st.selectbox("Caption Model", [
|
14 |
+
"ydshieh/vit-gpt2-coco-en",
|
15 |
+
"Salesforce/blip-image-captioning-large",
|
16 |
+
"nlpconnect/vit-gpt2-image-captioning",
|
17 |
+
"microsoft/git-base"
|
18 |
+
])
|
19 |
+
st.divider()
|
20 |
image_gen_guidance = st.slider("Stable Diffusion: Guidance Scale", value=7.5)
|
21 |
image_gen_steps = st.slider("stable Diffusion: Inference Steps", value=50)
|
22 |
|
|
|
27 |
image = Image.open(file_name)
|
28 |
|
29 |
with st.spinner('Captioning Provided Image'):
|
30 |
+
captioner = transformer(model=caption_model)
|
31 |
+
caption = captioner(image)[0].generated_text
|
|
|
|
|
32 |
|
33 |
+
captions.append(caption)
|
34 |
+
st.image(image, caption=caption)
|
35 |
|
36 |
with col2:
|
37 |
if len(captions) > 0:
|