Spaces:
Runtime error
Runtime error
from huggingface_hub import from_pretrained_keras | |
from keras_cv import models | |
import gradio as gr | |
from tensorflow import keras | |
keras.mixed_precision.set_global_policy("mixed_float16") | |
sd_dreambooth_model = models.StableDiffusion( | |
img_width=512, img_height=512, jit_compile=True | |
) | |
db_diffusion_model = from_pretrained_keras("keras-dreambooth/dreambooth_dosa") | |
sd_dreambooth_model._diffusion_model = db_diffusion_model | |
# generate images | |
def generate_images(prompt, negative_prompt, num_imgs_to_gen, num_steps, guidance_scale): | |
generated_images = sd_dreambooth_model.text_to_image( | |
prompt, | |
negative_prompt=negative_prompt, | |
batch_size=num_imgs_to_gen, | |
num_steps=num_steps, | |
unconditional_guidance_scale=guidance_scale | |
) | |
return generated_images | |
with gr.Blocks() as demo: | |
gr.HTML("<h2 style=\"font-size: 2em; font-weight: bold\" align=\"center\">Keras Dreambooth - The Humble Dosa</h2>") | |
gr.HTML("<p style=\"font-size: 14; font-weight: normal\" align=\"left\">This model has been fine-tuned to learn the concept of a dosa.<br>To use this demo, insert the string <q>bhr dosa</q> in your prompt</p>") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", lines=1, value="bhr dosa") | |
negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, value="deformed") | |
samples = gr.Slider(label="Number of Images", minimum=1, maximum=4, value=1, step=1) | |
num_steps = gr.Slider(label="Inference Steps", minimum=25, maximum=100, value=50, step=1) | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=12, value=7.5, step=0.5) | |
run = gr.Button(value="Run") | |
with gr.Column(): | |
gallery = gr.Gallery(label="Outputs").style(grid=(2,2)) | |
run.click(fn=generate_images, inputs=[prompt, negative_prompt, samples, num_steps, guidance_scale], outputs=gallery) | |
gr.Examples([["realistic picture of a bhr dosa in a restaurant", "sambar", 1, 50, 7.5]], | |
[prompt, negative_prompt, samples, num_steps, guidance_scale], gallery, generate_images, cache_examples=True) | |
gr.Markdown('Demo created by [Bharat Raghunathan](https://huggingface.co/bharat-raghunathan/)') | |
# pass function, input type for prompt, the output for multiple images | |
demo.queue(concurrency_count=2).launch() |