from huggingface_hub import from_pretrained_keras
from keras_cv import models
import gradio as gr
sd_dreambooth_model = models.StableDiffusion(
img_width=512, img_height=512
)
db_diffusion_model = from_pretrained_keras("bharat-raghunathan/dreambooth_dosa")
sd_dreambooth_model._diffusion_model = db_diffusion_model
# generate images
def generate_images(prompt, negative_prompt, num_imgs_to_gen, num_steps, guidance_scale):
generated_images = sd_dreambooth_model.text_to_image(
prompt,
negative_prompt=negative_prompt,
batch_size=num_imgs_to_gen,
num_steps=num_steps,
unconditional_guidance_scale=guidance_scale
)
return generated_images
with gr.Blocks() as demo:
gr.HTML("
Keras Dreambooth - The Humble Dosa
")
gr.HTML("This model has been fine-tuned to learn the concept of a dosa.
To use this demo, insert the string bhr dosa
in your prompt
")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(lines=1, value="bhr dosa", label="Prompt")
negative_prompt = gr.Textbox(lines=1, value="deformed", label="Negative Prompt")
samples = gr.Slider(minimum=1, maximum=4, default=1, step=1, label="Number of Images")
num_steps = gr.Slider(label="Inference Steps", value=50)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=12, default=7.5, step=0.5, label="Guidance Scale")
run = gr.Button(value="Run")
with gr.Column():
gallery = gr.Gallery(label="Outputs").style(grid=(2,2))
run.click(fn=generate_images, inputs=[prompt, negative_prompt, samples, num_steps, guidance_scale], outputs=gallery)
gr.Examples([["realistic picture of a man eating a bhr dosa", "home", 1, 50, 7.5],
["realistic picture of a bhr dosa on a plate", "chutney", 1, 50, 7.5],
["realistic picture of a bhr dosa in a restaurant", "sambar", 1, 50, 7.5],
],
[prompt, negative_prompt, samples, num_steps, guidance_scale], gallery, generate_images, cache_examples=True)
gr.Markdown('Demo created by [Bharat Raghunathan](https://huggingface.co/bharat-raghunathan/)')
# pass function, input type for prompt, the output for multiple images
demo.queue(concurrency_count=2).launch()