from huggingface_hub import from_pretrained_keras from keras_cv import models import gradio as gr sd_dreambooth_model = models.StableDiffusion( img_width=512, img_height=512 ) db_diffusion_model = from_pretrained_keras("bharat-raghunathan/dreambooth_dosa") sd_dreambooth_model._diffusion_model = db_diffusion_model gr.HTML("

Keras Dreambooth - The Humble Dosa

") gr.HTML("

This model has been fine-tuned to learn the concept of a dosa.") # generate images def infer(prompt): generated_images = sd_dreambooth_model.text_to_image( prompt ) return generated_images output = gr.Gallery(label="Outputs").style(grid=(2,2)) gr.Examples(["realistic picture of a man eating a dosa", "realistic picture of a dosa on a plate", "realistic picture of a dosa in a restaurant" ], prompt, gallery, generate_images, cache_examples=True) gr.Markdown('Demo created by [Bharat Raghunathan](https://huggingface.co/bharat-raghunathan/)') # pass function, input type for prompt, the output for multiple images gr.Interface(infer, inputs=["text"], outputs=[output]).launch()