Revise description
Browse files
app.py
CHANGED
@@ -71,8 +71,8 @@ input3 = gr.Image(shape=(28, 28), type='numpy', image_mode='L', label='Third ima
|
|
71 |
output = [gr.Label(), gr.Plot()]
|
72 |
# output = [gr.Plot()]
|
73 |
# it's good practice to pass examples, description and a title to guide users
|
74 |
-
title = 'Image
|
75 |
-
description = '
|
76 |
|
77 |
gr_interface = gr.Interface(
|
78 |
infer, inputs=[input1, input2, input3], outputs=output, allow_flagging='never',
|
@@ -83,6 +83,3 @@ gr_interface = gr.Interface(
|
|
83 |
['samples/5.png', 'samples/6.png', 'samples/3.png'], ['samples/7.png', 'samples/8.png', 'samples/9.png']]
|
84 |
)
|
85 |
gr_interface.launch(enable_queue=True, debug=True, inbrowser=True)
|
86 |
-
|
87 |
-
# gr_interface = gr.Interface(infer, input, output, examples=examples, allow_flagging=False, analytics_enabled=False, title=title, description=description).launch(enable_queue=True, debug=False)
|
88 |
-
# gr_interface.launch()
|
|
|
71 |
output = [gr.Label(), gr.Plot()]
|
72 |
# output = [gr.Plot()]
|
73 |
# it's good practice to pass examples, description and a title to guide users
|
74 |
+
title = 'Bag of Image Classification'
|
75 |
+
description = 'This is the demo for Keras Implementation of Classification using Attention-based Deep Multiple Instance Learning (MIL). The model will try to predict whether number 8 is within the set of input images. As it was trained on MNIST dataset, please use MNIST image for precise result.'
|
76 |
|
77 |
gr_interface = gr.Interface(
|
78 |
infer, inputs=[input1, input2, input3], outputs=output, allow_flagging='never',
|
|
|
83 |
['samples/5.png', 'samples/6.png', 'samples/3.png'], ['samples/7.png', 'samples/8.png', 'samples/9.png']]
|
84 |
)
|
85 |
gr_interface.launch(enable_queue=True, debug=True, inbrowser=True)
|
|
|
|
|
|