Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,114 +1,114 @@
|
|
1 |
-
import math
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
|
5 |
-
import os
|
6 |
-
import glob
|
7 |
-
import trimesh
|
8 |
-
import tensorflow as tf
|
9 |
-
from tensorflow import keras
|
10 |
-
from tensorflow.keras import layers
|
11 |
-
from matplotlib import pyplot as plt
|
12 |
-
|
13 |
-
import gradio as gr
|
14 |
-
from huggingface_hub import from_pretrained_keras
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
def conv_bn(x, filters):
|
19 |
-
x = layers.Conv1D(filters, kernel_size=1, padding="valid")(x)
|
20 |
-
x = layers.BatchNormalization(momentum=0.0)(x)
|
21 |
-
return layers.Activation("relu")(x)
|
22 |
-
|
23 |
-
|
24 |
-
def dense_bn(x, filters):
|
25 |
-
x = layers.Dense(filters)(x)
|
26 |
-
x = layers.BatchNormalization(momentum=0.0)(x)
|
27 |
-
return layers.Activation("relu")(x)
|
28 |
-
|
29 |
-
# @keras.utils.register_keras_serializable
|
30 |
-
class OrthogonalRegularizer(keras.regularizers.Regularizer):
|
31 |
-
def __init__(self, num_features, l2reg=0.001, **kwarg):
|
32 |
-
super(OrthogonalRegularizer, self).__init__(**kwargs)
|
33 |
-
self.num_features = num_features
|
34 |
-
self.l2reg = l2reg
|
35 |
-
self.eye = tf.eye(num_features)
|
36 |
-
|
37 |
-
def __call__(self, x):
|
38 |
-
x = tf.reshape(x, (-1, self.num_features, self.num_features))
|
39 |
-
xxt = tf.tensordot(x, x, axes=(2, 2))
|
40 |
-
xxt = tf.reshape(xxt, (-1, self.num_features, self.num_features))
|
41 |
-
return tf.reduce_sum(self.l2reg * tf.square(xxt - self.eye))
|
42 |
-
|
43 |
-
def get_config(self):
|
44 |
-
return {'l2reg': float(self.l2reg)}
|
45 |
-
|
46 |
-
def tnet(inputs, num_features):
|
47 |
-
|
48 |
-
# Initalise bias as the indentity matrix
|
49 |
-
bias = keras.initializers.Constant(np.eye(num_features).flatten())
|
50 |
-
reg = OrthogonalRegularizer(num_features)
|
51 |
-
|
52 |
-
x = conv_bn(inputs, 32)
|
53 |
-
x = conv_bn(x, 64)
|
54 |
-
x = conv_bn(x, 512)
|
55 |
-
x = layers.GlobalMaxPooling1D()(x)
|
56 |
-
x = dense_bn(x, 256)
|
57 |
-
x = dense_bn(x, 128)
|
58 |
-
x = layers.Dense(
|
59 |
-
num_features * num_features,
|
60 |
-
kernel_initializer="zeros",
|
61 |
-
bias_initializer=bias,
|
62 |
-
activity_regularizer=reg,
|
63 |
-
)(x)
|
64 |
-
feat_T = layers.Reshape((num_features, num_features))(x)
|
65 |
-
# Apply affine transformation to input features
|
66 |
-
return layers.Dot(axes=(2, 1))([inputs, feat_T])
|
67 |
-
|
68 |
-
EXAMPLES_PATH = '
|
69 |
-
model = from_pretrained_keras('keras-io/PointNet')
|
70 |
-
|
71 |
-
CLASS_MAP = {0: 'chair',
|
72 |
-
1: 'sofa',
|
73 |
-
2: 'desk',
|
74 |
-
3: 'bed',
|
75 |
-
4: 'dresser',
|
76 |
-
5: 'night_stand',
|
77 |
-
6: 'toilet',
|
78 |
-
7: 'bathtub',
|
79 |
-
8: 'monitor',
|
80 |
-
9: 'table'}
|
81 |
-
|
82 |
-
def infer(img_path):
|
83 |
-
mesh = trimesh.load(img_path.name)
|
84 |
-
points = mesh.sample(2048)
|
85 |
-
points = np.expand_dims(np.asarray(points), axis=0)
|
86 |
-
|
87 |
-
# run test data through model
|
88 |
-
preds = model.predict(points)
|
89 |
-
preds = tf.math.argmax(preds, -1)
|
90 |
-
|
91 |
-
# plot points with predicted class and label
|
92 |
-
fig = plt.figure(figsize=(4, 6))
|
93 |
-
ax = fig.add_subplot(2, 1, 1, projection="3d")
|
94 |
-
ax.scatter(points[0, :, 0], points[0, :, 1], points[0, :, 2])
|
95 |
-
ax.set_title(f"This is {CLASS_MAP[preds[0].numpy()]}")
|
96 |
-
ax.set_axis_off()
|
97 |
-
# plt.imshow(image)
|
98 |
-
return plt.gcf()
|
99 |
-
|
100 |
-
# get the inputs
|
101 |
-
inputs = gr.File()
|
102 |
-
|
103 |
-
# the app outputs two segmented images
|
104 |
-
output = gr.Plot()
|
105 |
-
|
106 |
-
|
107 |
-
# it's good practice to pass examples, description and a title to guide users
|
108 |
-
title = 'PointNet Classification and Segmentation'
|
109 |
-
description = 'Classify images using point cloud Segmentation'
|
110 |
-
article = "Author: <a href=\"https://huggingface.co/geninhu\">Nhu Hoang</a>. "
|
111 |
-
examples = [f'{EXAMPLES_PATH}/{f}' for f in os.listdir(EXAMPLES_PATH)]
|
112 |
-
|
113 |
-
gr.Interface(infer, inputs, output, examples= examples, allow_flagging='never',
|
114 |
-
title=title, description=description, article=article, live=False).launch(enable_queue=True, debug=False, inbrowser=False)
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
import os
|
6 |
+
import glob
|
7 |
+
import trimesh
|
8 |
+
import tensorflow as tf
|
9 |
+
from tensorflow import keras
|
10 |
+
from tensorflow.keras import layers
|
11 |
+
from matplotlib import pyplot as plt
|
12 |
+
|
13 |
+
import gradio as gr
|
14 |
+
from huggingface_hub import from_pretrained_keras
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def conv_bn(x, filters):
|
19 |
+
x = layers.Conv1D(filters, kernel_size=1, padding="valid")(x)
|
20 |
+
x = layers.BatchNormalization(momentum=0.0)(x)
|
21 |
+
return layers.Activation("relu")(x)
|
22 |
+
|
23 |
+
|
24 |
+
def dense_bn(x, filters):
|
25 |
+
x = layers.Dense(filters)(x)
|
26 |
+
x = layers.BatchNormalization(momentum=0.0)(x)
|
27 |
+
return layers.Activation("relu")(x)
|
28 |
+
|
29 |
+
# @keras.utils.register_keras_serializable
|
30 |
+
class OrthogonalRegularizer(keras.regularizers.Regularizer):
|
31 |
+
def __init__(self, num_features, l2reg=0.001, **kwarg):
|
32 |
+
super(OrthogonalRegularizer, self).__init__(**kwargs)
|
33 |
+
self.num_features = num_features
|
34 |
+
self.l2reg = l2reg
|
35 |
+
self.eye = tf.eye(num_features)
|
36 |
+
|
37 |
+
def __call__(self, x):
|
38 |
+
x = tf.reshape(x, (-1, self.num_features, self.num_features))
|
39 |
+
xxt = tf.tensordot(x, x, axes=(2, 2))
|
40 |
+
xxt = tf.reshape(xxt, (-1, self.num_features, self.num_features))
|
41 |
+
return tf.reduce_sum(self.l2reg * tf.square(xxt - self.eye))
|
42 |
+
|
43 |
+
def get_config(self):
|
44 |
+
return {'l2reg': float(self.l2reg)}
|
45 |
+
|
46 |
+
def tnet(inputs, num_features):
|
47 |
+
|
48 |
+
# Initalise bias as the indentity matrix
|
49 |
+
bias = keras.initializers.Constant(np.eye(num_features).flatten())
|
50 |
+
reg = OrthogonalRegularizer(num_features)
|
51 |
+
|
52 |
+
x = conv_bn(inputs, 32)
|
53 |
+
x = conv_bn(x, 64)
|
54 |
+
x = conv_bn(x, 512)
|
55 |
+
x = layers.GlobalMaxPooling1D()(x)
|
56 |
+
x = dense_bn(x, 256)
|
57 |
+
x = dense_bn(x, 128)
|
58 |
+
x = layers.Dense(
|
59 |
+
num_features * num_features,
|
60 |
+
kernel_initializer="zeros",
|
61 |
+
bias_initializer=bias,
|
62 |
+
activity_regularizer=reg,
|
63 |
+
)(x)
|
64 |
+
feat_T = layers.Reshape((num_features, num_features))(x)
|
65 |
+
# Apply affine transformation to input features
|
66 |
+
return layers.Dot(axes=(2, 1))([inputs, feat_T])
|
67 |
+
|
68 |
+
EXAMPLES_PATH = 'examples'
|
69 |
+
model = from_pretrained_keras('keras-io/PointNet')
|
70 |
+
|
71 |
+
CLASS_MAP = {0: 'chair',
|
72 |
+
1: 'sofa',
|
73 |
+
2: 'desk',
|
74 |
+
3: 'bed',
|
75 |
+
4: 'dresser',
|
76 |
+
5: 'night_stand',
|
77 |
+
6: 'toilet',
|
78 |
+
7: 'bathtub',
|
79 |
+
8: 'monitor',
|
80 |
+
9: 'table'}
|
81 |
+
|
82 |
+
def infer(img_path):
|
83 |
+
mesh = trimesh.load(img_path.name)
|
84 |
+
points = mesh.sample(2048)
|
85 |
+
points = np.expand_dims(np.asarray(points), axis=0)
|
86 |
+
|
87 |
+
# run test data through model
|
88 |
+
preds = model.predict(points)
|
89 |
+
preds = tf.math.argmax(preds, -1)
|
90 |
+
|
91 |
+
# plot points with predicted class and label
|
92 |
+
fig = plt.figure(figsize=(4, 6))
|
93 |
+
ax = fig.add_subplot(2, 1, 1, projection="3d")
|
94 |
+
ax.scatter(points[0, :, 0], points[0, :, 1], points[0, :, 2])
|
95 |
+
ax.set_title(f"This is {CLASS_MAP[preds[0].numpy()]}")
|
96 |
+
ax.set_axis_off()
|
97 |
+
# plt.imshow(image)
|
98 |
+
return plt.gcf()
|
99 |
+
|
100 |
+
# get the inputs
|
101 |
+
inputs = gr.File()
|
102 |
+
|
103 |
+
# the app outputs two segmented images
|
104 |
+
output = gr.Plot()
|
105 |
+
|
106 |
+
|
107 |
+
# it's good practice to pass examples, description and a title to guide users
|
108 |
+
title = 'PointNet Classification and Segmentation'
|
109 |
+
description = 'Classify images using point cloud Segmentation'
|
110 |
+
article = "Author: <a href=\"https://huggingface.co/geninhu\">Nhu Hoang</a>. "
|
111 |
+
examples = [f'{EXAMPLES_PATH}/{f}' for f in os.listdir(EXAMPLES_PATH)]
|
112 |
+
|
113 |
+
gr.Interface(infer, inputs, output, examples= examples, allow_flagging='never',
|
114 |
+
title=title, description=description, article=article, live=False).launch(enable_queue=True, debug=False, inbrowser=False)
|