Spaces:
Runtime error
Runtime error
from huggingface_hub import from_pretrained_keras | |
import matplotlib.pyplot as plt | |
from math import sqrt, ceil | |
import tensorflow as tf | |
import gradio as gr | |
import numpy as np | |
model = from_pretrained_keras("IMvision12/WGAN-GP") | |
title = "WGAN-GP" | |
description = "Image Generation Using WGAN" | |
article = """ | |
<p style='text-align: center'> | |
<a href='https://keras.io/examples/generative/wgan_gp/' target='_blank'>Keras Example given by A_K_Nain</a> | |
<br> | |
Space by Gitesh Chawda | |
</p> | |
""" | |
inputs = gr.inputs.Number(label="number of images") | |
outputs = gr.outputs.Image(label="Predictions") | |
def create_digit_samples(n_samples): | |
latent_dim = 128 | |
random_latent_vectors = tf.random.normal(shape=(int(n_samples), 128)) | |
examples = model.predict(random_latent_vectors) | |
#examples = examples * 255.0 | |
size = ceil(sqrt(n_samples)) | |
digit_images = np.zeros((28*size, 28*size), dtype=float) | |
n = 0 | |
for i in range(size): | |
for j in range(size): | |
if n == n_samples: | |
break | |
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0] | |
n += 1 | |
#digit_images = (digit_images/127.5) -1 | |
return digit_images | |
inputs = gr.inputs.Number(label="number of images") | |
outputs = gr.outputs.Image(label="Output Image") | |
examples = [ | |
[1], | |
[2], | |
[3], | |
[4], | |
[64] | |
] | |
gr.Interface(create_digit_samples, inputs, outputs, analytics_enabled=False, examples=examples).launch() | |