IMvision12 commited on
Commit
1bde683
·
1 Parent(s): 734bc31

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -7
app.py CHANGED
@@ -19,12 +19,11 @@ article = """
19
 
20
  def generate_latent_points(latent_dim, n_samples):
21
  random_latent_vectors = tf.random.normal(shape=(n_samples, latent_dim))
22
- return
23
 
24
- def create_digit_samples(digit, n_samples):
25
- if digit in range(10):
26
  latent_dim = 128
27
- random_vector_labels = generate_latent_points(int(digit), latent_dim, int(n_samples))
28
  examples = model.predict(random_vector_labels)
29
  examples = examples * 255.0
30
  size = ceil(sqrt(n_samples))
@@ -39,9 +38,6 @@ def create_digit_samples(digit, n_samples):
39
  digit_images = (digit_images/127.5) -1
40
  return digit_images
41
 
42
- description = "Keras implementation for Conditional GAN to generate samples for specific digit of MNIST"
43
- article = "Author:<a href=\"https://huggingface.co/rajrathi\"> Rajeshwar Rathi</a>; Based on the keras example by <a href=\"https://keras.io/examples/generative/conditional_gan/\">Sayak Paul</a>"
44
- title = "Conditional GAN for MNIST"
45
 
46
  examples = [[1, 10], [3, 5], [5, 15]]
47
 
 
19
 
20
  def generate_latent_points(latent_dim, n_samples):
21
  random_latent_vectors = tf.random.normal(shape=(n_samples, latent_dim))
22
+ return random_latent_vectors
23
 
24
+ def create_digit_samples(n_samples):
 
25
  latent_dim = 128
26
+ random_vector_labels = generate_latent_points(latent_dim, int(n_samples))
27
  examples = model.predict(random_vector_labels)
28
  examples = examples * 255.0
29
  size = ceil(sqrt(n_samples))
 
38
  digit_images = (digit_images/127.5) -1
39
  return digit_images
40
 
 
 
 
41
 
42
  examples = [[1, 10], [3, 5], [5, 15]]
43