IMvision12 commited on
Commit
226690e
·
1 Parent(s): c98c2a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -29
app.py CHANGED
@@ -7,20 +7,6 @@ import numpy as np
7
 
8
  model = from_pretrained_keras("IMvision12/WGAN-GP")
9
 
10
- def create_digit_samples(num_images):
11
- random_latent_vectors = tf.random.normal(shape=(int(num_images), 128))
12
- predictions = model.predict(random_latent_vectors)
13
- num = ceil(sqrt(num_images))
14
- digit_images = np.zeros((28*num, 28*num), dtype=float)
15
- n = 0
16
- for i in range(num):
17
- for j in range(num):
18
- if n == num_images:
19
- break
20
- digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = predictions[n, :, :, 0]
21
- n += 1
22
- return digit_images
23
-
24
  title = "WGAN-GP"
25
  description = "Image Generation Using WGAN"
26
  article = """
@@ -33,23 +19,34 @@ article = """
33
  inputs = gr.inputs.Number(label="number of images")
34
  outputs = gr.outputs.Image(label="Predictions")
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  examples = [
 
 
 
37
  [4],
38
- [7],
39
- [8],
40
- [2],
41
- [10]
42
  ]
43
 
44
 
45
- gr.Interface(
46
- fn=create_digit_samples,
47
- inputs=inputs, # Resize to CIFAR
48
- outputs=outputs,
49
- examples=examples,
50
- article=article,
51
- allow_flagging="never",
52
- analytics_enabled=False,
53
- title=title,
54
- description=description,
55
- ).launch(enable_queue=True)
 
7
 
8
  model = from_pretrained_keras("IMvision12/WGAN-GP")
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  title = "WGAN-GP"
11
  description = "Image Generation Using WGAN"
12
  article = """
 
19
  inputs = gr.inputs.Number(label="number of images")
20
  outputs = gr.outputs.Image(label="Predictions")
21
 
22
+ def create_digit_samples(n_samples):
23
+ latent_dim = 128
24
+ random_latent_vectors = tf.random.normal(shape=(int(n_samples), 128))
25
+ examples = model.predict(random_latent_vectors)
26
+ #examples = examples * 255.0
27
+ size = ceil(sqrt(n_samples))
28
+ digit_images = np.zeros((28*size, 28*size), dtype=float)
29
+ n = 0
30
+ for i in range(size):
31
+ for j in range(size):
32
+ if n == n_samples:
33
+ break
34
+ digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
35
+ n += 1
36
+ #digit_images = (digit_images/127.5) -1
37
+ return digit_images
38
+
39
+
40
+ inputs = gr.inputs.Number(label="number of images")
41
+ outputs = gr.outputs.Image(label="Output Image")
42
+
43
  examples = [
44
+ [1],
45
+ [2],
46
+ [3],
47
  [4],
48
+ [64]
 
 
 
49
  ]
50
 
51
 
52
+ gr.Interface(create_digit_samples, inputs, outputs, analytics_enabled=False, examples=examples).launch(debug=True)