Spaces:
Runtime error
Runtime error
Commit
·
226690e
1
Parent(s):
c98c2a9
Update app.py
Browse files
app.py
CHANGED
@@ -7,20 +7,6 @@ import numpy as np
|
|
7 |
|
8 |
model = from_pretrained_keras("IMvision12/WGAN-GP")
|
9 |
|
10 |
-
def create_digit_samples(num_images):
|
11 |
-
random_latent_vectors = tf.random.normal(shape=(int(num_images), 128))
|
12 |
-
predictions = model.predict(random_latent_vectors)
|
13 |
-
num = ceil(sqrt(num_images))
|
14 |
-
digit_images = np.zeros((28*num, 28*num), dtype=float)
|
15 |
-
n = 0
|
16 |
-
for i in range(num):
|
17 |
-
for j in range(num):
|
18 |
-
if n == num_images:
|
19 |
-
break
|
20 |
-
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = predictions[n, :, :, 0]
|
21 |
-
n += 1
|
22 |
-
return digit_images
|
23 |
-
|
24 |
title = "WGAN-GP"
|
25 |
description = "Image Generation Using WGAN"
|
26 |
article = """
|
@@ -33,23 +19,34 @@ article = """
|
|
33 |
inputs = gr.inputs.Number(label="number of images")
|
34 |
outputs = gr.outputs.Image(label="Predictions")
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
examples = [
|
|
|
|
|
|
|
37 |
[4],
|
38 |
-
[
|
39 |
-
[8],
|
40 |
-
[2],
|
41 |
-
[10]
|
42 |
]
|
43 |
|
44 |
|
45 |
-
gr.Interface(
|
46 |
-
fn=create_digit_samples,
|
47 |
-
inputs=inputs, # Resize to CIFAR
|
48 |
-
outputs=outputs,
|
49 |
-
examples=examples,
|
50 |
-
article=article,
|
51 |
-
allow_flagging="never",
|
52 |
-
analytics_enabled=False,
|
53 |
-
title=title,
|
54 |
-
description=description,
|
55 |
-
).launch(enable_queue=True)
|
|
|
7 |
|
8 |
model = from_pretrained_keras("IMvision12/WGAN-GP")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
title = "WGAN-GP"
|
11 |
description = "Image Generation Using WGAN"
|
12 |
article = """
|
|
|
19 |
inputs = gr.inputs.Number(label="number of images")
|
20 |
outputs = gr.outputs.Image(label="Predictions")
|
21 |
|
22 |
+
def create_digit_samples(n_samples):
|
23 |
+
latent_dim = 128
|
24 |
+
random_latent_vectors = tf.random.normal(shape=(int(n_samples), 128))
|
25 |
+
examples = model.predict(random_latent_vectors)
|
26 |
+
#examples = examples * 255.0
|
27 |
+
size = ceil(sqrt(n_samples))
|
28 |
+
digit_images = np.zeros((28*size, 28*size), dtype=float)
|
29 |
+
n = 0
|
30 |
+
for i in range(size):
|
31 |
+
for j in range(size):
|
32 |
+
if n == n_samples:
|
33 |
+
break
|
34 |
+
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
|
35 |
+
n += 1
|
36 |
+
#digit_images = (digit_images/127.5) -1
|
37 |
+
return digit_images
|
38 |
+
|
39 |
+
|
40 |
+
inputs = gr.inputs.Number(label="number of images")
|
41 |
+
outputs = gr.outputs.Image(label="Output Image")
|
42 |
+
|
43 |
examples = [
|
44 |
+
[1],
|
45 |
+
[2],
|
46 |
+
[3],
|
47 |
[4],
|
48 |
+
[64]
|
|
|
|
|
|
|
49 |
]
|
50 |
|
51 |
|
52 |
+
gr.Interface(create_digit_samples, inputs, outputs, analytics_enabled=False, examples=examples).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|