IMvision12 commited on
Commit
419ca0b
·
1 Parent(s): 32b8f5e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -22
app.py CHANGED
@@ -16,37 +16,32 @@ article = """
16
  Space by Gitesh Chawda
17
  </p>
18
  """
19
- inputs = gr.inputs.Number(label="number of images")
20
- outputs = gr.outputs.Image(label="Predictions")
21
 
22
- def create_digit_samples(n_samples):
23
- latent_dim = 128
24
- random_latent_vectors = tf.random.normal(shape=(int(n_samples), 128))
25
- examples = model.predict(random_latent_vectors)
26
- #examples = examples * 255.0
27
- size = ceil(sqrt(n_samples))
28
- digit_images = np.zeros((28*size, 28*size), dtype=float)
29
  n = 0
30
- for i in range(size):
31
- for j in range(size):
32
- if n == n_samples:
33
  break
34
- digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
35
  n += 1
36
- #digit_images = (digit_images/127.5) -1
37
- return digit_images
38
 
39
 
40
  inputs = gr.inputs.Number(label="number of images")
41
- outputs = gr.outputs.Image(label="Output Image")
42
 
43
  examples = [
44
- [1],
45
- [2],
46
- [3],
47
- [4],
48
- [64]
49
  ]
50
 
51
 
52
- gr.Interface(create_digit_samples, inputs, outputs, analytics_enabled=False, examples=examples).launch()
 
16
  Space by Gitesh Chawda
17
  </p>
18
  """
 
 
19
 
20
+ def create_digit_samples(num_images):
21
+ random_latent_vectors = tf.random.normal(shape=(int(num_images), 128))
22
+ predictions = model.predict(random_latent_vectors)
23
+ num = ceil(sqrt(num_images))
24
+ images = np.zeros((28*num, 28*num), dtype=float)
 
 
25
  n = 0
26
+ for i in range(num):
27
+ for j in range(num):
28
+ if n == num_images:
29
  break
30
+ images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = predictions[n, :, :, 0]
31
  n += 1
32
+ return images
 
33
 
34
 
35
  inputs = gr.inputs.Number(label="number of images")
36
+ outputs = gr.outputs.Image(label="Predictions")
37
 
38
  examples = [
39
+ [10],
40
+ [7],
41
+ [1],
42
+ [3],
43
+ [5]
44
  ]
45
 
46
 
47
+ gr.Interface(create_digit_samples, inputs, outputs, article=article, description=description, article=article, analytics_enabled=False, examples=examples).launch(enable_queue=True)